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Coral reefs are shallow-water ecosystems that consist of reefs made of calcium carbonate which 
is mostly secreted by reef-building corals and encrusting macroalgae. They occupy less than 0.1% 
of the ocean floor yet play multiple important roles throughout the tropics, housing high levels 
of biological diversity as well as providing key ecosystem goods and services such as habitat 
for fisheries, coastal protection, and appealing environments for tourism (Wild et al., 2011). 
About 275 million people live within 30 km of a coral reef (Burke et al., 2011) and derive some 
benefits from the ecosystem services that coral reefs provide (Hoegh-Guldberg, 2011), including 
provisioning (food, livelihoods, construction material, medicine), regulating (shoreline protection, 
water quality), supporting (primary production, nutrient cycling), and cultural (religion, tourism) 
services. This is especially true for the many coastal and small island nations in the world’s 
tropical regions (Section 29.3.3.1). 

Coral reefs are one of the most vulnerable marine ecosystems (high confidence; Sections 
5.4.2.4, 6.3.1, 6.3.2, 6.3.5, 25.6.2, and 30.5), and more than half of the world’s reefs are under 
medium or high risk of degradation (Burke et al., 2011). Most human-induced disturbances to 
coral reefs were local until the early 1980s (e.g., unsustainable coastal development, pollution, 
nutrient enrichment, and overfishing) when disturbances from ocean warming (principally mass 
coral bleaching and mortality) began to become widespread (Glynn, 1984). Concern about the 
impact of ocean acidification on coral reefs developed over the same period, primarily over the 
implications of ocean acidification for the building and maintenance of the calcium carbonate 
reef framework (Box CC-OA). 

A wide range of climatic and non-climatic drivers affect corals and coral reefs and negative 
impacts have already been observed (Sections 5.4.2.4, 6.3.1, 6.3.2, 25.6.2.1, 30.5.3, 30.5.6). 
Bleaching involves the breakdown and loss of endosymbiotic algae, which live in the coral tissues 
and play a key role in supplying the coral host with energy (see Section 6.3.1. for physiological 
details and Section 30.5 for a regional analysis). Mass coral bleaching and mortality, triggered 
by positive temperature anomalies (high confidence), is the most widespread and conspicuous 
impact of climate change (Figure CR-1A and B, Figure 5-3; Sections 5.4.2.4, 6.3.1, 6.3.5, 25.6.2.1, 
30.5, and 30.8.2). For example, the level of thermal stress at most of the 47 reef sites where 
bleaching occurred during 1997–1998 was unmatched in the period 1903–1999 (Lough, 2000). 
Ocean acidification reduces biodiversity (Figure CR-1C and D) and the calcification rate of corals 
(high confidence; Sections 5.4.2.4, 6.3.2, 6.3.5) while at the same time increasing the rate of 
dissolution of the reef framework (medium confidence; Section 5.2.2.4) through stimulation of 
biological erosion and chemical dissolution. Taken together, these changes will tip the calcium 
carbonate balance of coral reefs toward net dissolution (medium confidence; Section 5.4.2.4). 
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Ocean warming and acidification have synergistic effects in several reef-builders (Section 5.2.4.2, 6.3.5). Taken together, these changes will 
erode habitats for reef-based fisheries, increase the exposure of coastlines to waves and storms, as well as degrading environmental features 
important to industries such as tourism (high confidence; Section 6.4.1.3, 25.6.2, 30.5).
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Figure CR-1 | (a, b) The same coral community before and after a bleaching event in February 2002 at 5 m depth, Halfway Island, Great Barrier Reef. Approximately 95% of the 
coral community was severely bleached in 2002 (Elvidge et al., 2004). Corals experience increasing mortality as the intensity of a heating event increases. A few coral species 
show the ability to shuffle symbiotic communities of dinoflagellates and appear to be more tolerant of warmer conditions (Berkelmans and van Oppen, 2006; Jones et al., 2008). 
(c, d) Three CO2 seeps in Milne Bay Province, Papua New Guinea show that prolonged exposure to high CO2 is related to fundamental changes in the ecology of coral reefs 
(Fabricius et al., 2011), including reduced coral diversity (–39%), severely reduced structural complexity (–67%), lower density of young corals (–66%), and fewer crustose 
coralline algae (–85%). At high CO2 sites (d; median pHT ~7.8, where pHT  is pH on the total scale), reefs are dominated by massive corals while corals with high morphological 
complexity are underrepresented compared with control sites (c; median pHT ~8.0). Reef development ceases at pHT  values below 7.7. (e) Temporal trend in coral cover for the 
whole Great Barrier Reef over the period 1985–2012 (N=number of reefs, De'ath et al., 2012). (f) Composite bars indicate the estimated mean coral mortality for each year, and 
the sub-bars indicate the relative mortality due to crown-of-thorns starfish, cyclones, and bleaching for the whole Great Barrier Reef (De'ath et al., 2012). (Photo credit: R. 
Berkelmans (a and b) and K. Fabricius (c and d).)
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A growing number of studies have reported regional scale changes in coral calcification and mortality that are consistent with the scale and 
impact of ocean warming and acidification when compared to local factors such as declining water quality and overfishing (Hoegh-Guldberg 
et al., 2007). The abundance of reef building corals is in rapid decline in many Pacific and Southeast Asian regions (very high confidence, 1 to 
2% per year for 1968–2004; Bruno and Selig, 2007). Similarly, the abundance of reef-building corals has decreased by more than 80% on many 
Caribbean reefs (1977–2001; Gardner et al., 2003), with a dramatic phase shift from corals to seaweeds occurring on Jamaican reefs (Hughes, 
1994). Tropical cyclones, coral predators, and thermal stress-related coral bleaching and mortality have led to a decline in coral cover on the 
Great Barrier Reef by about 51% between 1985 and 2012 (Figure CR-1E and F). Although less well documented, benthic invertebrates other 
than corals are also at risk (Przeslawski et al., 2008). Fish biodiversity is threatened by the permanent degradation of coral reefs, including in a 
marine reserve (Jones et al., 2004).

Future impacts of climate-related drivers (ocean warming, acidification, sea level rise as well as more intense tropical cyclones and rainfall 
events) will exacerbate the impacts of non-climate–related drivers (high confidence). Even under optimistic assumptions regarding corals being 
able to rapidly adapt to thermal stress, one-third (9 to 60%, 68% uncertainty range) of the world’s coral reefs are projected to be subject to 
long-term degradation (next few decades) under the Representative Concentration Pathway (RCP)3-PD scenario (Frieler et al., 2013). Under 
the RCP4.5 scenario, this fraction increases to two-thirds (30 to 88%, 68% uncertainty range). If present-day corals have residual capacity to 
acclimate and/or adapt, half of the coral reefs may avoid high-frequency bleaching through 2100 (limited evidence, limited agreement; Logan 
et al., 2014). Evidence of corals adapting rapidly, however, to climate change is missing or equivocal (Hoegh-Guldberg, 2012).

Damage to coral reefs has implications for several key regional services:
• Resources: Coral reefs account for 10 to 12% of the fish caught in tropical countries, and 20 to 25% of the fish caught by developing 

nations (Garcia and de Leiva Moreno, 2003). More than  half (55%) of the 49 island countries considered by Newton et al. (2007) are 
already exploiting their coral reef fisheries in an unsustainable way and the production of coral reef fish in the Pacific is projected to 
decrease 20% by 2050 under the Special Report on Emission Scenarios (SRES) A2 emissions scenario (Bell et al., 2013).

• Coastal protection: Coral reefs contribute to protecting the shoreline from the destructive action of storm surges and cyclones (Sheppard 
et al., 2005), sheltering the only habitable land for several island nations, habitats suitable for the establishment and maintenance of 
mangroves and wetlands, as well as areas for recreational activities. This role is threatened by future sea level rise, the decrease in coral 
cover, reduced rates of calcification, and higher rates of dissolution and bioerosion due to ocean warming and acidification (Sections 
5.4.2.4, 6.4.1, 30.5).

• Tourism: More than 100 countries benefit from the recreational value provided by their coral reefs (Burke et al., 2011). For example, the 
Great Barrier Reef Marine Park attracts about 1.9 million visits each year and generates A$5.4 billion to the Australian economy and 
54,000 jobs (90% in the tourism sector; Biggs, 2011).

Coral reefs make a modest contribution to the global gross domestic product (GDP) but their economic importance can be high at the country 
and regional scales (Pratchett et al., 2008). For example, tourism and fisheries represent 5% of the GDP of South Pacific islands (average for 
2001–2011; Laurans et al., 2013). At the local scale, these two services provided in 2009–2011 at least 25% of the annual income of villages in 
Vanuatu and Fiji (Pascal, 2011; Laurans et al., 2013).

Isolated reefs can recover from major disturbance, and the benefits of their isolation from chronic anthropogenic pressures can outweigh the 
costs of limited connectivity (Gilmour et al., 2013). Marine protected areas (MPAs) and fisheries management have the potential to increase 
ecosystem resilience and increase the recovery of coral reefs after climate change impacts such as mass coral bleaching (McLeod et al., 2009). 
Although they are key conservation and management tools, they are unable to protect corals directly from thermal stress (Selig et al., 2012), 
suggesting that they need to be complemented with additional and alternative strategies (Rau et al., 2012; Billé et al., 2013). While MPA 
networks are a critical management tool, they should be established considering other forms of resource management (e.g., fishery catch limits 
and gear restrictions) and integrated ocean and coastal management to control land-based threats such as pollution and sedimentation. There 
is medium confidence that networks of highly protected areas nested within a broader management framework can contribute to preserving 
coral reefs under increasing human pressure at local and global scales (Salm et al., 2006). Locally, controlling the input of nutrients and 
sediment from land is an important complementary management strategy (Mcleod et al., 2009) because nutrient enrichment can increase the 
susceptibility of corals to bleaching (Wiedenmann et al., 2013) and coastal pollutants enriched with fertilizers can increase acidification (Kelly 
et al., 2011). In the long term, limiting the amount of ocean warming and acidification is central to ensuring the viability of coral reefs and 
dependent communities (high confidence; Section 5.2.4.4, 30.5).
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Ecosystem-based adaptation (EBA), defined as the use of biodiversity and ecosystem services as 
part of an overall adaptation strategy to help people to adapt to the adverse effects of climate 
change (CBD, 2009), integrates the use of biodiversity and ecosystem services into climate 
change adaptation strategies (e.g., CBD, 2009; Munroe et al., 2011;  see IPCC AR5 WGII Chapters 
3, 4, 5, 8, 9, 13, 14, 15, 16, 19, 22, 25, and 27). EBA is implemented through the sustainable 
management of natural resources and conservation and restoration of ecosystems, to provide 
and sustain services that facilitate adaptation both to climate variability and change (Colls et al., 
2009). It also sets out to take into account the multiple social, economic, and cultural co-benefits 
for local communities (CBD COP 10 Decision X/33).

EBA can be combined with, or even serve as a substitute for, the use of engineered infrastructure 
or other technological approaches. Engineered defenses such as dams, sea walls, and levees 
adversely affect biodiversity, potentially resulting in maladaptation due to damage to ecosystem 
regulating services (Campbell et al., 2009; Munroe et al., 2011). There is some evidence that the 
restoration and use of ecosystem services may reduce or delay the need for these engineering 
solutions (CBD, 2009). EBA offers lower risk of maladaptation than engineering solutions in 
that their application is more flexible and responsive to unanticipated environmental changes. 
Well-integrated EBA can be more cost effective and sustainable than non-integrated physical 
engineering approaches (Jones et al., 2012), and may contribute to achieving sustainable 
development goals (e.g., poverty reduction, sustainable environmental management, and even 
mitigation objectives), especially when they are integrated with sound ecosystem management 
approaches (CBD, 2009). In addition, EBA yields economic, social, and environmental co-benefits 
in the form of ecosystem goods and services (World Bank, 2009).

EBA is applicable in both developed and developing countries. In developing countries where 
economies depend more directly on the provision of ecosystem services (Vignola et al., 2009), 
EBA may be a highly useful approach to reduce risks to climate change impacts and ensure that 
development proceeds on a pathways that are resilient to climate change (Munang et al., 2013). 
EBA projects may be developed by enhancing existing initiatives, such as community-based 
adaptation and natural resource management approaches (e.g., Khan et al., 2012, Midgley et al., 
2012; Roberts et al., 2012). 

Examples of ecosystem based approaches to adaptation include:
• Sustainable water management, where river basins, aquifers, flood plains, and their 

associated vegetation are managed or restored to provide resilient water storage and 
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enhanced baseflows, flood regulation and protection services, reduction of erosion/siltation rates, and more ecosystem goods (e.g., 
Opperman et al., 2009; Midgley et al., 2012)

• Disaster risk reduction through the restoration of coastal habitats (e.g., mangroves, wetlands, and deltas) to provide effective measure 
against storm-surges, saline intrusion, and coastal erosion (Jonkman et al., 2013)

• Sustainable management of grasslands and rangelands to enhance pastoral livelihoods and increase resilience to drought and flooding 
• Establishment of diverse and resilient agricultural systems, and adapting crop and livestock variety mixes to secure food provision. 

Traditional knowledge may contribute in this area through, for example, identifying indigenous crop and livestock genetic diversity, and 
water conservation techniques.

• Management of fire-prone ecosystems to achieve safer fire regimes while ensuring the maintenance of natural processes

Application of EBA, like other approaches, is not without risk, and risk/benefit assessments will allow better assessment of opportunities 
offered by the approach (CBD, 2009). The examples of EBA are too few and too recent to assess either the risks or the benefits comprehensively 
at this stage. EBA is still a developing concept but should be considered alongside adaptation options based more on engineering works or 
social change, and existing and new cases used to build understanding of when and where its use is appropriate.

Climate mitigation Climate change impacts

Ecosystem protection 
and restoration

Sustainable 
economies with 
reduced risk of 
climate impacts

Increase in human well-being

Sustained ecosystem 
services delivery

Biodiversity retention, 
ecosystem resilience, and 

reduced vulnerability

Degradation of 
ecological processes 

and loss of biodiversity 

Loss of 
ecosystem 

services

Loss of human 
well-being

Increased pressure 
on ecosystems/
natural capital

With ecosystem-based 
adaptation

Without ecosystem-based 
adaptation

Figure EA-1 | Adapted from Munang et al. (2013). Ecosystem-based adaptation (EBA) uses the capacity of nature to buffer human systems from the adverse impacts of climate 
change. Without EBA, climate change may cause degradation of ecological processes (central white panel) leading to losses in human well-being. Implementing EBA (outer blue 
panel) may reduce or offset these adverse impacts resulting in a virtuous cycle that reduces climate-related risks to human communities, and may provide mitigation benefits.
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Gender, along with sociodemographic factors of age, wealth, and class, is critical to the ways 
in which climate change is experienced. There are significant gender dimensions to impacts, 
adaptation, and vulnerability. This issue was raised in WGII AR4 and SREX reports (Adger et 
al., 2007; IPCC, 2012), but for the AR5 there are significant new findings, based on multiple 
lines of evidence on how climate change is differentiated by gender, and how climate change 
contributes to perpetuating existing gender inequalities. This new research has been undertaken 
in every region of the world (e.g. Brouwer et al., 2007; Buechler, 2009; Nelson and Stathers, 
2009; Nightingale, 2009; Dankelman, 2010; MacGregor, 2010; Alston, 2011; Arora-Jonsson, 2011; 
Omolo, 2011; Resureccion, 2011). 

Gender dimensions of vulnerability derive from differential access to the social and environmental 
resources required for adaptation. In many rural economies and resource-based livelihood 
systems, it is well established that women have poorer access than men to financial resources, 
land, education, health, and other basic rights. Further drivers of gender inequality stem 
from social exclusion from decision-making processes and labor markets, making women in 
particular less able to cope with and adapt to climate change impacts (Paavola, 2008; Djoudi 
and Brockhaus, 2011; Rijkers and Costa, 2012). These gender inequalities manifest themselves in 
gendered livelihood impacts and feminisation of responsibilities: whereas both men and women 
experience increases in productive roles, only women experience increased reproductive roles 
(Resureccion, 2011; Section 9.3.5.1.5, Box 13-1). A study in Australia, for example, showed how 
more regular occurrence of drought has put women under increasing pressure to earn off-farm 
income and contribute to more on-farm labor (Alston, 2011). Studies in Tanzania and Malawi 
demonstrate how women experience food and nutrition insecurity because food is preferentially 
distributed among other family members (Nelson and Stathers, 2009; Kakota et al., 2011).

AR4 assessed a body of literature that focused on women’s relatively higher vulnerability to 
weather-related disasters in terms of number of deaths (Adger et al., 2007). Additional literature 
published since that time adds nuances by showing how socially constructed gender differences 
affect exposure to extreme events, leading to differential patterns of mortality for both men and 
women (high confidence; Section 11.3.3, Table 12-3). Statistical evidence of patterns of male and 
female mortality from recorded extreme events in 141 countries between 1981 and 2002 found 
that disasters kill women at an earlier age than men (Neumayer and Plümper, 2007; see also 
Box 13-1). Reasons for gendered differences in mortality include various socially and culturally 
determined gender roles. Studies in Bangladesh, for example, show that women do not learn to 
swim and so are vulnerable when exposed to flooding (Röhr, 2006) and that, in Nicaragua, the 
construction of gender roles means that middle-class women are expected to stay in the house, 
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even during floods and in risk-prone areas (Bradshaw, 2010). Although the differential vulnerability of women to extreme events has long 
been understood, there is now increasing evidence to show how gender roles for men can affect their vulnerability. In particular, men are often 
expected to be brave and heroic, and engage in risky life-saving behaviors that increase their likelihood of mortality (Box 13-1). In Hai Lang 
district, Vietnam, for example, more men died than women as a result of their involvement in search and rescue and protection of fields during 
flooding (Campbell et al., 2009). Women and girls are more likely to become victims of domestic violence after a disaster, particularly when 
they are living in emergency accommodation, which has been documented in the USA and Australia (Jenkins and Phillips, 2008; Anastario et 
al., 2009; Alston, 2011; Whittenbury, 2013; see also Box 13-1).

Heat stress exhibits gendered differences, reflecting both physiological and social factors (Section 11.3.3). The majority of studies in European 
countries show women to be more at risk, but their usually higher physiological vulnerability can be offset in some circumstances by relatively 
lower social vulnerability (if they are well connected in supportive social networks, for example). During the Paris heat wave, unmarried men 
were at greater risk than unmarried women, and in Chicago elderly men were at greatest risk, thought to reflect their lack of connectedness 
in social support networks which led to higher social vulnerability (Kovats and Hajat, 2008). A multi-city study showed geographical variations 
in the relationship between sex and mortality due to heat stress: in Mexico City, women had a higher risk of mortality than men, although the 
reverse was true in Santiago and São Paulo (Bell et al., 2008). 

Recognizing gender differences in vulnerability and adaptation can enable gender-sensitive responses that reduce the vulnerability of women 
and men (Alston, 2013). Evaluations of adaptation investments demonstrate that those approaches that are not sensitive to gender dimensions 
and other drivers of social inequalities risk reinforcing existing vulnerabilities (Vincent et al., 2010; Arora-Jonsson, 2011; Figueiredo and Perkins, 
2012). Government-supported interventions to improve production through cash-cropping and non-farm enterprises in rural economies, for 
example, typically advantage men over women because cash generation is seen as a male activity in rural areas (Gladwin et al., 2001; see 
also Section 13.3.1). In contrast, rainwater and conservation-based adaptation initiatives may require additional labor, which women cannot 
necessarily afford to provide (Baiphethi et al., 2008). Encouraging gender-equitable access to education and strengthening of social capital 
are among the best means of improving adaptation of rural women farmers (Goulden et al., 2009; Vincent et al., 2010; Below et al., 2012) and 
could be used to complement existing initiatives mentioned above that benefit men. Rights-based approaches to development can inform 
adaptation efforts as they focus on addressing the ways in which institutional practices shape access to resources and control over decision-
making processes, including through the social construction of gender and its intersection with other factors that shape inequalities and 
vulnerabilities (Tschakert and Machado, 2012; Bee et al., 2013; Tschakert, 2013; see also Section 22.4.3 and Table 22-5).
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According to WGI, it is very likely that the number and intensity of hot days have increased 
markedly in the last three decades and virtually certain that this increase will continue into 
the late 21st century. In addition, it is likely (medium confidence) that the occurrence of heat 
waves (multiple days of hot weather in a row) has more than doubled in some locations, but 
very likely that there will be more frequent heat waves over most land areas after mid-century. 
Under a medium warming scenario, Coumou et al. (2013) predicted that the number of monthly 
heat records will be more than 12 times more common by the 2040s compared to a non-
warming world. In a longer time perspective, if the global mean temperature increases to +7°C 
or more, the habitability of parts of the tropics and mid-latitudes will be at risk (Sherwood and 
Huber, 2010). Heat waves affect natural and human systems directly, often with severe losses 
of lives and assets as a result, and may act as triggers of tipping points (Hughes et al., 2013). 
Consequently, heat stress plays an important role in several key risks noted in Chapter 19 and 
CC-KR.

Economy and Society (Chapters 10, 11, 12, 13)
Environmental heat stress has already reduced the global labor capacity to 90% in peak months 
with a further predicted reduction to 80% in peak months by 2050. Under a high warming 
scenario (RCP8.5), labor capacity is expected to be less than 40% of present-day conditions in 
peak months by 2200 (Dunne et al., 2013). Adaptation costs for securing cooling capacities and 
emergency shelters during heat waves will be substantial.

Heat waves are associated with social predicaments such as increasing violence (Anderson, 
2012) as well as overall health and psychological distress and low life satisfaction (Tawatsupa 
et al., 2012). Impacts are highly differential with disproportional burdens on poor people, elderly 
people, and those who are marginalized (Wilhelmi et al., 2012). Urban areas are expected to 
suffer more due to the combined effect of climate and the urban heat island effect (Fischer et al., 
2012; see also Section 8.2.3.1). In low- and medium-income countries, adaptation to heat stress 
is severely restricted for most people in poverty and particularly those who are dependent on 
working outdoors in agriculture, fisheries, and construction. In small-scale agriculture, women and 
children are particularly at risk due to the gendered division of labor (Croppenstedt et al., 2013). 
The expected increase in wildfires as a result of heat waves (Pechony and Shindell, 2010) is a 
concern for human security, health, and ecosystems. Air pollution from wildfires already causes an 
estimated 339,000 premature deaths per year worldwide (Johnston et al., 2012).
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Human Health (Chapter 11)
Morbidity and mortality due to heat stress is now common all over the world (Barriopedro et al., 2011; Nitschke et al., 2011; Rahmstorf 
and Coumou, 2011; Diboulo et al., 2012; Hansen et al., 2012). Elderly people and people with circulatory and respiratory diseases are also 
vulnerable even in developed countries; they can become victims even inside their own houses (Honda et al., 2011). People in physical work are 
at particular risk as such work produces substantial heat within the body, which cannot be released if the outside temperature and humidity 
is above certain limits (Kjellstrom et al., 2009). The risk of non-melanoma skin cancer from exposure to UV radiation during summer months 
increases with temperature (van der Leun, et al., 2008). High temperatures are also associated with an increase in air-borne allergens acting as 
triggers for respiratory illnesses such as asthma, allergic rhinitis, conjunctivitis, and dermatitis (Beggs, 2010).

Ecosystems (Chapters 4, 5, 6, 30)
Tree mortality is increasing globally (Williams et al., 2013)  and can be linked to climate impacts, especially heat and drought (Reichstein et al., 
2013), even though attribution to climate change is difficult owing to lack of time series and confounding factors. In the Mediterranean region, 
higher fire risk, longer fire season, and more frequent large, severe fires are expected as a result of increasing heat waves in combination with 
drought (Duguy et al., 2013; see also Box 4.2).

Marine ecosystem shifts attributed to climate change are often caused by temperature extremes rather than changes in the average (Pörtner 
and Knust, 2007). During heat exposure near biogeographical limits, even small (<0.5°C) shifts in temperature extremes can have large effects, 
often exacerbated by concomitant exposures to hypoxia and/or elevated CO2 levels and associated acidification (medium confidence; Hoegh-
Guldberg et al., 2007; see also  Figure 6-5;  Sections 6.3.1, 6.3.5, 30.4, 30.5; CC-MB).

Most coral reefs have experienced heat stress sufficient to cause frequent mass coral bleaching events in the last 30 years, sometimes 
followed by mass mortality (Baker et al., 2008). The interaction of acidification and warming exacerbates coral bleaching and mortality (very 
high confidence).Temperate seagrass and kelp ecosystems will decline with the increased frequency of heat waves and through the impact of 
invasive subtropical species (high confidence; Sections  5, 6, 30.4, 30.5, CC-CR, CC-MB).

Agriculture (Chapter 7)
Excessive heat interacts with key physiological processes in crops. Negative yield impacts for all crops past +3°C of local warming without 
adaptation, even with benefits of higher CO2 and rainfall, are expected even in cool environments (Teixeira et al., 2013). For tropical systems 
where moisture availability or extreme heat limits the length of the growing season, there is a high potential for a decline in the length of the 
growing season and suitability for crops (medium evidence, medium agreement; Jones and Thornton, 2009). For example, half of the wheat-
growing area of the Indo-Gangetic Plains could become significantly heat-stressed by the 2050s.

There is high confidence that high temperatures reduce animal feeding and growth rates (Thornton et al., 2009). Heat stress reduces 
reproductive rates of livestock (Hansen, 2009), weakens their overall performance (Henry et al., 2012), and may cause mass mortality of 
animals in feedlots during heat waves (Polley et al., 2013). In the USA, current economic losses due to heat stress of livestock are estimated at 
several billion US$ annually (St-Pierre et al., 2003).
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A Selection of the Hazards, 
Key Vulnerabilities, Key 
Risks, and Emergent Risks 
Identified in the WGII 
Contribution to the Fifth 
Assessment ReportKR
The accompanying table provides a selection of the hazards, key vulnerabilities, key risks, and 
emergent risks identified in various chapters in this report (Chapters 4, 6, 7, 8, 9, 11, 13, 19, 22, 
23, 24, 25, 26, 27, 28, 29, 30). Key risks are determined by hazards interacting with vulnerability 
and exposure of human systems, and ecosystems or species. The table underscores the complexity 
of risks determined by various climate-related hazards, non-climatic stressors, and multifaceted 
vulnerabilities. The examples show that underlying phenomena, such as poverty or insecure 
land-tenure arrangements, unsustainable and rapid urbanization, other demographic changes, 
failure in governance and inadequate governmental attention to risk reduction, and tolerance 
limits of species and ecosystems that often provide important services to vulnerable communities, 
generate the context in which climatic change related harm and loss can occur. The table 
illustrates that current global megatrends (e.g., urbanization and other demographic changes) in 
combination and in specific development context (e.g., in low-lying coastal zones), can generate 
new systemic risks in their interaction with climate hazards that exceed existing adaptation and 
risk management capacities, particularly in highly vulnerable regions, such as dense urban areas 
of low-lying deltas. A representative set of lines of sight is provided from across WGI and WGII. 
See Section 19.6.2.1 for a full description of the methods used to select these entries.
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Hazards, Key Vulnerabilities, Key Risks, and Emergent Risks

Continued next page

Hazard Key vulnerabilities Key risks Emergent risks

Terrestrial and 
Inland Water 
Systems 

(Chapter 4)

Rising air, soil, and 
water temperature 
(Sections 4.2.4, 4.3.2, 
4.3.3)

Exceedance of eco-physiological climate 
tolerance limits of species (limited coping and 
adaptive capacities), increased viability of 
alien organisms

Risk of loss of native biodiversity, increase in 
non-native organism dominance

Cascades of native species loss due to 
interdependencies

Health response to spread of temperature-
sensitive vectors (insects)

Risk of novel and /or much more severe pest and 
pathogen outbreaks 

Interactions among pests, drought, and fire 
can lead to new risks and large negative 
impacts on ecosystems.

Change in seasonality 
of rain 
(Section 4.3.3)

Increasing susceptibility of plants and 
ecosystem services, due to mismatch between 
plant life strategy and growth opportunities

Changes in plant functional type mix leading 
to biome change with respective risks for 
ecosystems and ecosystem services

Fire-promoting grasses grow in winter-
rainfall areas and provide fuel in dry 
summers. 

Ocean 
Systems 

(Chapter 6)

Rising water 
temperature, increase 
of (thermal and haline) 
stratification, and 
marine acidification 
(Section 6.1.1)

Tolerance limits of endemic species surpassed 
(limited coping and adaptive capacities), 
increased abundance of invasive organisms, 
high susceptibility and sensitivity of warm 
water coral reefs and respective ecosystem 
services for coastal communities (Sections 
6.3.1, 6.4.1)

Risk of loss of endemic species, mixing of 
ecosystem types, increased dominance of 
invasive organisms. 

Increasing risk of loss of coral cover and 
associated ecosystem with reduction of 
biodiversity and ecosystem services (Section 6.3.1)

Enhancement of risk as a result of 
interactions, e.g., acidification and warming 
on calcareous organisms (Section 6.3.5)

New vulnerabilities can emerge as a result 
of shifted productivity zones and species 
distribution ranges, largely from low to high 
latitudes (Sections 6.3.4, 6.5.1), shifting 
fishery catch potential with species migration 
(Sections 6.3.1, 6.5.2, 6.5.3)

Risks due to unknown productivity and services 
of new ecosystem types (Sections 6.4.1, 6.5.3)

Enhancement of risk due to interactions of 
warming, hypoxia, acidification, new biotic 
interactions (Sections 6.3.5, 6.3.6)

Expansion of oxygen 
minimum zones and 
coastal dead zones 
with stratification and 
eutrophication 
(Section 6.1.1)

Increasing susceptibility because hypoxia 
tolerance limits of larger animals surpassed, 
habitat contraction and loss for midwater 
fishes and benthic invertebrates (Section 
6.3.3)

Risk of loss of larger animals and plants, shifts to 
hypoxia-adapted, largely microbial communities 
with reduced biodiversity (Section 6.3.3)

Enhancement of risk due to expanding 
hypoxia in warming and acidifying oceans 
(Section 6.3.5)

Enhanced harmful 
algal blooms in coastal 
areas due to rising 
water temperature 
(Section 6.4.2.3)

Increasing susceptibility and limited adaptive 
capacities of important ecosystems and 
valuable services due to already existing 
multiple stresses (Sections 6.3.5, 6.4.1)

Increasing risk due to enhanced frequency of 
dinoflagellate blooms and respective potential 
losses and degradations of coastal ecosystems 
and ecosystem services (Section 6.4.2)

Disproportionate enhancement of risk due 
to interactions of various stresses (Section 
6.3.5)

Food Security 
and Food 
Production 
Systems 

(Chapter 7)

Rising average 
temperatures and 
more frequent extreme 
temperatures 
(Sections 7.1, 7.2, 
7.4, 7.5)

Susceptibility of all elements of the food 
system from production to consumption, 
particularly for key grain crops

Risk of crop failures, breakdown of food 
distribution and storage processes

Increase in the global population to about 
9 billion combined with rising temperatures 
and other trace gases such as ozone 
affecting food production and quality. Upper 
temperature limit to the ability of some food 
systems to adapt 

Extreme precipitation 
and droughts (Section 
7.4)

Crops, pasture, and husbandry are susceptible 
and sensitive to drought and extreme 
precipitation.

Risk of crop failure, risk of limited food access 
and quality

Flood and droughts affect crop yields and 
quality, and directly affect food access in 
most developing countries. (Section 7.4)

Urban Areas 

(Chapter 8)

Inland flooding
(Sections 8.2.3, 8.2.4)

Large numbers of people exposed in urban 
areas to flood events. Particularly susceptible 
are people in low-income informal settlements 
with inadequate infrastructure (and often on 
flood plains or along river banks). These bring 
serious environmental health consequences 
from overwhelmed, aging, poorly maintained, 
and inadequate urban drainage infrastructure 
and widespread impermeable surfaces. Local 
governments are often unable or unwilling to 
give attention to needed flood-related disaster 
risk reduction. Much of the urban population 
unable to get or afford housing that protects 
against flooding, or insurance. Certain 
groups are more sensitive to ill health from 
flood impacts, which may include increased 
mosquito- and water-borne diseases.

Risks of deaths and injuries and disruptions to 
livelihoods / incomes, food supplies, and drinking 
water

In many urban areas, larger and more 
frequent flooding impacting much larger 
population. No insurance available or 
impacts reaching the limits of insurance. 
Shift in the burden of risk management 
from the state to those at risk, leading 
to greater inequality and property blight, 
abandonment of urban districts, and the 
creation of high-risk / high-poverty spatial 
traps  

Coastal flooding 
(including sea level 
rise and storm surge) 
(Sections 8.1.4, 8.2.3, 
8.2.4)

High concentrations of people, businesses, and 
physical assets including critical infrastructure 
exposed in low-lying and unprotected coastal 
zones. Particularly susceptible is the urban 
population that is unable to get or afford 
housing that protects against flooding or 
insurance. The local government is unable or 
unwilling to give needed attention to disaster 
risk reduction.

Risks from deaths and injuries and disruptions to 
livelihoods / incomes, food supplies, and drinking 
water 

Additional 2 billion or so urban dwellers 
expected over the next three decades

Sea level rise means increasing risks over 
time, yet with high and often increasing 
concentrations of population and economic 
activities on the coasts. No insurance 
available or reaching the limits of insurance; 
shift in the burden of risk management from 
the state to those at risk leading to greater 
inequality and property blight, abandonment 
of urban districts, and the creation of high-
risk / high-poverty spatial traps

Table KR-1 |  Examples of hazards /stressors, key vulnerabilities, key risks, and emergent risks.
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Hazard Key vulnerabilities Key risks Emergent risks

Urban Areas 
(continued)

(Chapter 8)

Heat and cold 
(including urban heat 
island effect) 
(Section 8.2.3)

Particularly susceptible is a large and often 
increasing urban population of infants, young 
children, older age groups, expectant mothers, 
people with chronic diseases or compromised 
immune system in settlements exposed 
to higher temperatures (especially in heat 
islands) and unexpected cold spells. Inability of 
local organizations for health, emergency, and 
social services to adapt to new risk levels and 
set up needed initiatives for vulnerable groups

Risk of mortality and morbidity increasing, 
including shifts in seasonal patterns and 
concentrations due to hot days with higher 
or more prolonged high temperatures or 
unexpected cold spells. Avoiding risks often most 
difficult for low-income groups

Duration and variability of heat waves 
increasing risks over time for most locations 
owing to interactions with multiple stressors 
such as air pollution  

Water shortages and 
drought in urban 
regions 
(Sections 8.2.3, 8.2.4)

Lack of piped water to homes of hundreds 
of millions of urban dwellers. Many urban 
areas subject to water shortages and irregular 
supplies, with constraints on increasing 
supplies. Lack of capacity and resilience 
in water management regimes including 
rural–urban linkages. Dependence on water 
resources in energy production systems

Risks from constraints on urban water provision 
services to people and industry with human and 
economic impacts. Risk of damage and loss to 
urban ecology and its services including urban 
and peri-urban agriculture.

Cities’ viability may be threatened by loss or 
depletion of freshwater sources—including 
for cities dependent on distant glacier 
melt water or on depleting groundwater 
resources.

Changes in urban 
meteorological 
regimes lead to 
enhanced air pollution. 
(Section 8.2.3)

Increases in exposure and in pollution 
levels with impacts most serious among 
physiologically susceptible populations. 
Limited coping and adaptive capacities, due 
to lacking implementation of pollution control 
legislation of urban governments

Increasing risk of mortality and morbidity, 
lowered quality of life. These risks can also 
undermine the competitiveness of global cities 
to attract key workers and investment.

Complex and compounding health crises

Geo-hydrological 
hazards (salt water 
intrusion, mud / land 
slides, subsidence) 
(Sections 8.2.3, 8.2.4)

Local structures and networked infrastructure 
(piped water, sanitation, drainage, 
communications, transport, electricity, gas) 
particularly susceptible. Inability of many 
low-income households to move to housing 
on safer sites.

Risk of damage to networked infrastructure. Risk 
of loss of human life and property

Potential for large local and aggregate 
impacts  

Knock-on effects for urban activities and 
well-being

Wind storms with 
higher intensity 
(Sections 8.1.4, 8.2.4)

Substandard buildings and physical 
infrastructure and the services and functions 
they support particularly susceptible. Old and 
difficult to retrofit buildings and infrastructure 
in cities

Local government unable or unwilling to give 
attention to disaster risk reduction (limited 
coping and adaptive capacities)

Risk of damage to dwellings, businesses, and 
public infrastructure. Risk of loss of function 
and services. Challenges to recovery, especially 
where insurance is absent

Challenges to individuals, businesses, 
and public agencies where the costs of 
retrofitting are high and other sectors 
or interests capture investment budgets; 
potential for tensions between development 
and risk reduction investments

Changing hazard 
profile including 
novel hazards and 
new multi-hazard 
complexes 
(Sections 8.1.4, 8.2.4)

Newly exposed populations and infrastructure, 
especially those with limited capacity for 
multi-hazard risk forecasting and where 
risk reduction capacity is limited, e.g., 
where risk management planning is overly 
hazard specific including where physical 
infrastructure is predesigned in anticipation 
of other risks (e.g., geophysical rather than 
hydrometeorological)

Risks from failures within coupled systems, e.g., 
reliance of drainage systems on electric pumps, 
reliance of emergency services on roads and 
telecommunications. Potential of psychological 
shock from unanticipated risks  

Loss of faith in risk management 
institutions. Potential for extreme impacts 
that are magnified by a lack of preparation 
and capacity in response

Compound slow-onset 
hazards including 
rising temperatures 
and variability in 
temperature and water 
(Sections 8.2.2, 8.2.4) 

Large sections of the urban population in low- 
and middle-income nations with livelihoods or 
food supplies dependent on urban and peri-
urban agriculture are especially susceptible.   

Risk of damage to or degradation of soils, water 
catchment capacity, fuel wood production, urban 
and peri-urban agriculture, and other productive 
or protective ecosystem services. Risk of knock-
on impacts for urban and peri-urban livelihoods 
and urban health

Collapsing of peri-urban economies and 
ecosystem services with wider implications 
for urban food security, service provision, 
and disaster risk reduction

Climate change–
induced or intensified 
hazard of more 
diseases and exposure 
to disease vectors 
(Sections 8.2.3, 8.2.4)

Large urban population that is exposed to 
food-borne and water-borne diseases and 
to malaria, dengue, and other vector-borne 
diseases that are influenced by climate change 

Risk due to increases in exposure to these 
diseases 

Lack of capacity of public health system to 
simultaneously address these health risks 
with other climate-related risks such as 
flooding

Rural Areas 

(Chapter 9)

Drought in pastoral 
areas 
(Sections 9.3.3.1, 
9.3.5.2)

Increasing vulnerability due to encroachment 
on pastoral rangelands, inappropriate land 
policy, misperception and undermining of 
pastoral livelihoods, conflict over natural 
resources, all driven by remoteness and lack 
of voice

Risk of famine

Risk of loss of revenues from livestock trade

Increasing risks for rural livelihoods through 
animal disease in pastoral areas combined 
with direct impacts of drought

Effects of climate 
change on artisanal 
fisheries 
(Sections 9.3.3.1, 
9.3.5.2)

Artisanal fisheries affected by pollution and 
mangrove loss, competition from aquaculture, 
and the neglect of the sector by governments 
and researchers as well as complex property 
rights

Risk of economic losses for artisanal fisherfolk, 
due to declining catches and incomes and 
damage to fishing gear and infrastructure

Reduced dietary protein for those 
consuming artisanally caught fish, combined 
with other climate-related risks

Table KR-1 (continued)

Continued next page



Cross-Chapter BoxHazards, Key Vulnerabilities, Key Risks, and Emergent Risks

116

KR

Hazard Key vulnerabilities Key risks Emergent risks

Rural Areas 
(continued)

(Chapter 9)

Water shortages and 
drought in rural areas  
(Section 9.3.5.1.1)

Rural people lacking access to drinking and 
irrigation water. High dependence of rural 
people on natural resource-related activities. 
Lack of capacity and resilience in water 
management regimes (institutionally driven). 
Increased water demand from population 
pressure

Risk of reduced agricultural productivity of rural 
people, including those dependent on rainfed 
or irrigated agriculture, or high-yield varieties, 
forestry, and inland fisheries. Risk of food 
insecurity and decrease in incomes. Decreases in 
household nutritional status (Section 9.3.5.1)

Impacts on livelihoods driven by interaction 
with other factors (water management 
institutions, water demand, water used 
by non-food crops), including potential 
conflicts for access to water. Water-related 
diseases

Human 
Health 

(Chapter 11)

Increasing frequency 
and intensity of 
extreme heat

Older people living in cities are most 
susceptible to hot days and heat waves, 
as well as people with preexisting health 
conditions. (Section 11.3)

Risk of increased mortality and morbidity during 
hot days and heat waves. (Section 11.4.1) Risk 
of mortality, morbidity, and productivity loss, 
particularly among manual workers in hot 
climates

The number of elderly people is projected 
to triple from 2010 to 2050. This can result 
in overloading of health and emergency 
services. 

Increasing 
temperatures, 
increased variability in 
precipitation

Poorer populations are particularly susceptible 
to climate-induced reductions in local 
crop yields. Food insecurity may lead to 
undernutrition. Children are particularly 
vulnerable. (Section 11.3)

Risk of a larger burden of disease and increased 
food insecurity for particular population groups. 
Increasing risk that progress in reducing 
mortality and morbidity from undernutrition may 
slow or reverse. (Section 11.6.1)

Combined effects of climate impacts, 
population growth, plateauing productivity 
gains, land demand for livestock, biofuels, 
persistent inequality, and ongoing food 
insecurity for the poor

Increasing 
temperatures, 
changing patterns of 
precipitation

Non-immune populations who are exposed 
to water- and vector-borne diseases that are 
sensitive to meteorological conditions (Section 
11.3)

Increasing health risks due to changing spatial 
and temporal distribution of diseases strains 
public health systems, especially if this occurs in 
combination with economic downturn. (Section 
11.5.1)

Rapid climate and other environmental 
change may promote emergence of new 
pathogens.

Increased variability in 
precipitation

People exposed to diarrhea aggravated by 
higher temperatures, and unusually high or 
low precipitation (Section 11.3)

Risk that the progress to date in reducing 
childhood deaths from diarrheal disease is 
compromised (Section 11.5.2)

Increased rate of failure of water and 
sanitation infrastructure due to climate 
change leading to higher diarrhea risk

Livelihoods 
and Poverty 

(Chapter 13) 

Increasing frequency 
and severity of 
droughts, coupled with 
decreasing rainfall 
and / or increased 
unpredictability of 
rainfall 
(Sections 13.2.1.2, 
13.2.1.4, 13.2.2.2) 

Poorly endowed farmers (high and persistent 
poverty), particularly in drylands, are 
susceptible to these hazards, since they have 
a very limited ability to compensate for losses 
in water-dependent farming systems and /or 
livestock.

Risk of irreversible harm due to short time 
for recovery between droughts, approaching 
tipping point in rainfed farming system and /or 
pastoralism

Deteriorating livelihoods stuck in poverty 
traps, heightened food insecurity, decreased 
land productivity, outmigration, and new 
urban poor in LICs and MICs

Floods and flash 
floods in informal 
urban settlements 
and mountain 
environments, 
destroying physical 
assets (e.g., homes, 
roads, terraces, 
irrigation canals) 
(Sections 13.2.1.1, 
13.2.1.3, 13.2.1.4)

High exposure and susceptibility of people, 
particularly children and elderly, as well as 
disabled in flood-prone areas. Inadequate 
infrastructure, culturally imposed gender roles, 
and limited ability to cope and adapt due 
to political and institutional marginalization 
and high poverty adds to the susceptibility of 
these people in informal urban settlements; 
limited political interest in development and 
building adaptive capacity

Risk of high morbidity and mortality due to 
floods and flash floods. Factors that further 
increase risk may include a shift from transient 
to chronic poverty due to eroded human and 
economic assets (e.g., labor market) and 
economic losses due to infrastructure damage. 

Exacerbated inequality between better-
endowed households able to invest in 
flood-control measures and /or insurance 
and increasingly vulnerable populations 
prone to eviction, erosion of livelihoods, and 
outmigration

Increased variability 
of precipitation; shifts 
in mean climate and 
extreme events 
(Sections 13.2.1.1, 
13.2.1.4)

Limited ability to cope owing to exhaustion of 
social networks, especially among the elderly 
and female-headed households; mobilization 
of labor and food no longer possible

Hazard combines with vulnerability to shift 
populations from transient to chronic poverty 
due to persistent and irreversible socioeconomic 
and political marginalization. In addition, the 
lack of governmental support, as well as limited 
effectiveness of response options, increase the 
risk.

Increasing yet invisible multidimensional 
vulnerability and deprivation at the 
convergence of climatic hazards and 
socioeconomic stressors

Successive and 
extreme events (floods, 
droughts) coupled 
with increasing 
temperatures and 
rising water demand 
(Sections 13.2.1.1, 
13.2.1.5)

Rural communities are particularly susceptible, 
due to the marginalization of rural water users 
to the benefit of urban users, given political 
and economic priorities (e.g., Australia, Andes, 
Himalayas, Caribbean).

Risk of loss of rural livelihoods, severe economic 
losses in agriculture, and damage to cultural 
values and identity; mental health impacts 
(including increased rates of suicide)

Loss of rural livelihoods that have existed 
for generations, heightened outmigration to 
urban areas; emergence of new poverty in 
MICs and HICs

Sea level rise 
(Sections 13.1.4, 
13.2.1.1, 13.2.2.1, 
13.2.2.3)

High number of people exposed in low-lying 
areas coupled with high susceptibility due to 
multidimensional poverty, limited alternative 
livelihood options among poor households, 
and exclusion from institutional decision-
making structures

Risk of severe harm and loss of livelihoods. 
Potential loss of common-pool resources; 
of sense of place, belonging, and identity, 
especially among indigenous populations 

Loss of livelihoods and mental health 
risks due to radical change in landscape, 
disappearance of natural resources, and 
potential relocation; increased migration

Increasing 
temperatures and heat 
waves 
(Sections 13.2.1.5, 
13.2.2.3, 13.2.2.4)

Agricultural wage laborers, small-scale 
farmers in areas with multidimensional 
poverty and economic marginalization, 
children in urban slums, and the elderly are 
particularly susceptible.

Risk of increased morbidity and mortality due 
to heat stress, among male and female workers, 
children, and the elderly, limited protection due 
to socioeconomic discrimination and inadequate 
governmental responses

Declining labor pool for agriculture coupled 
with new challenges for rural health care 
systems in LICs and MICs; aging and low-
income populations without safety nets in 
HICs at risk

Table KR-1 (continued)
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Livelihoods 
and Poverty 
(continued)

(Chapter 13)

Increased variability 
of rainfall and/ or 
extreme events (floods, 
droughts, heat waves) 
(Sections 13.2.1.1, 
13.2.1.3, 13.2.1.4, 
13.2.1.5)

People highly dependent on rainfed 
agriculture are particularly at risk. Persistent 
poverty among subsistence farmers and urban 
wage laborers who are net buyers of food 
with limited coping mechanisms

Risk of crop failure, spikes in food prices, 
reduction in consumption to protect household 
assets, risk of food insecurity, shifts from 
transient to chronic poverty due to limited ability 
to reduce risks

Food riots, child food poverty, global food 
crises, limits of insurance and other risk-
spreading strategies

Changing rainfall 
patterns (temporally 
and spatially) 

Households or people with a high dependence 
on rainfed agriculture and little access to 
alternative modes of income

Risks of crop failure, food shortage, severe 
famine

Coincidence of hazard with periods of 
high global food prices leads to risk of 
failure of coping strategies and adaptation 
mechanisms such as crop insurance (risk 
spreading).

Stressor from soaring 
demand (and prices) 
for biofuel feedstocks 
due to climate policies 

Farmers and groups that have unclear and / or 
insecure land tenure arrangements are 
exposed to the dispossession of land due to 
land grabbing in developing countries.

Risk of harm and loss of livelihoods for some 
rural residents due to soaring demand for biofuel 
feedstocks and insecure land tenure and land 
grabbing

Creation of large groups of landless farmers 
unable to support themselves. Social unrest 
due to disparities between intensive energy 
production and neglected food production

Increasing frequency 
of extreme events 
(droughts, floods), 
e.g., if 1:20 year 
drought / flood 
becomes 1:5 year 
drought / flood

Pastoralists and small farmers subject to 
damage to their productive assets (e.g., herds 
of livestock; dykes, fences, terraces) 

Risk of the loss of livelihoods and harm due to 
shorter time for recovery between extremes. 
Pastoralists restocking after a drought may take 
several years; in terraced agriculture, need to 
rebuild terraces after flood, which may take 
several years

Collapse of coping strategies with risk 
of collapsing livelihoods. Adaptation 
mechanisms such as insurance fail due to 
increasing frequency of claims.

Emergent 
Risks and Key 
Vulnerabilities 

(Chapter 19) 

Warming and 
drying (precipitation 
changes of uncertain 
magnitude) 
(WGI AR5 TS 5.3; SPM; 
Sections 11.3, 12.4)

Limits to coping capacity to deal with reduced 
water availability; increasing exposure 
and demand due to population increase; 
conflicting demands for alternative water 
uses; sociocultural constraints on some 
adaptation options (Sections 19.2.2, 19.3.2.2, 
19.6.1.1, 19.6.3.4)

Risk of harm and loss due to livelihood 
degradation from systematic constraints on 
water resource use that lead to supply falling far 
below demand. In addition, limited coping and 
adaptation options increase the risk of harm and 
loss. (Sections 19.3.2.2, 19.6.3.4)

Competition for water from diverse sectors 
(e.g., energy, agriculture, industry) interacts 
with climate changes to produce locally 
severe shortages. (Sections 19.3.2.2, 
19.6.3.4)

Changes in regional 
and seasonal 
temperature and 
precipitation over land 
(WGI AR5 TS 5.3; SPM; 
Sections 11.3, 12.4)

Communities highly dependent on ecosystem 
services (Sections 19.2.2.1, 19.3.2.1) which 
are negatively affected by changes in regional 
and seasonal temperature

Risk of large-scale species richness loss over 
most of the global land surface. 57 ± 6% of 
widespread and common plants and 34 ± 7% of 
widespread and common animals are expected 
to lose ≥50% of their current climatic range by 
the 2080s leading to loss of services. (Section 
19.3.2.1)

Widespread loss of ecosystem services, 
including: provisioning, such as food and 
water; regulating, such as the control of 
climate and disease; supporting, such 
as nutrient cycles and crop pollination; 
and cultural, such as spiritual and 
recreational benefit (Sections 19.3.2.1, 
19.6.3.4)

Africa 

(Chapter 22)

Increasing temperature Children, pregnant women, and those with 
compromised health status are particularly 
at risk for temperature-related changes in 
diarrheal and vector-borne diseases, and for 
temperature-related reductions in crop yields.  
Outdoor workers, older adults, and young 
children are most susceptible to hot weather 
and heat waves. (Sections 22.3.5.2, 22.3.5.4)

Risk of changes in the geographic distribution, 
seasonality, and incidence of infectious diseases, 
leading to increases in the health burden. Risk 
of increased burdens of stunting in children. Risk 
of increase in morbidity and mortality during hot 
days and heat waves 

Interactions among factors lead to emerging 
and re-emerging epidemics.

Populations dependent on aquatic systems 
and aquatic ecosystem services that are 
sensitive to increased water temperatures

Loss of aquatic ecosystems and risks for people 
who might depend on these resources; reduction 
in freshwater fisheries production (Sections 
22.3.2.2, 22.3.4.4)

Risk of loss of livelihoods due to 
interactions of loss of ecosystem services 
and other climate-related stressors on poor 
communities

Rural and urban populations whose food and 
livelihood security is diminished

Risk of harm and loss due to increased heat 
stress on crops and livestock resulting in reduced 
productivity; increased food storage losses due 
to spoilage (Sections 22.3.4.1, 22.3.4.2)

Range expansion of crop pests and diseases 
to high-elevation agroecosystems (Section 
22.3.4.3)

Extreme events, e.g., 
floods and flash floods 
(and drought) 

Population groups living in informal 
settlements in highly exposed urban areas; 
women and children often the most vulnerable 
to disaster risk (Sections 22.3.6, 22.4.3)

Increasing risk of mortality, harm and losses 
due to water logging triggered by heavy rainfall 
events

Compounded risk of epidemics including 
diarrheal diseases (e.g., cholera)

Susceptible groups include those who 
experience diminished access to food resulting 
from reduced capacity to transport, store, and 
market food, such as the urban poor.

Risk of food shortages and of damages to the 
food system due to storms and flooding

Food price spikes due to convergence of 
climatic and non-climatic forces that reduce 
food access for the poor whose income is 
disproportionately spent on food (Section 
22.3.4.5)

Children, pregnant women, and those with 
compromised health status are particularly 
vulnerable to reduced access to safe water 
and improved sanitation and increasing food 
insecurity. (Sections 22.3.5.2, 22.3.5.3)

Risk of crop and livestock losses from drought

Risk of reduced water supply and quality for 
household use. (Sections 22.3.4.1, 22.3.4.2) Risk 
of increased incidence of food- and water-borne 
diseases (e.g., cholera) and undernutrition.

Risk of drinking water contamination due to 
heavy precipitation events and flooding (Section 
22.3.5.2)

Compound effects of high temperature and 
changes in rainfall on human and natural 
systems. Increased incidence of stunting in 
children (Section 22.3.5.3)
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Europe 

(Chapter 23)

Extreme weather 
events
(Section 23.9)

Sectors with limited coping and adaptive 
capacity as well as high sensitivity to these 
extreme events, such as transport, energy, and 
health, are particularly susceptible.

Risk of new systemic threats due to stress 
on multiple and interconnected sectors. Risk 
of failure of service provision of one or more 
sectors

Disproportionate intensification of risk due 
to increasing interdependencies

Climate change 
increases the spatial 
distribution and 
seasonality of pests 
and diseases. 
(Section 23.4.1, 23.4.3, 
23.4.4)

High susceptibility of plants and animals that 
are exposed to pests and diseases

Risk of increases in crop losses and animal 
diseases or even fatalities of livestock

Increasing risks due to limited response 
options and various feedback processes 
in agriculture, e.g., use of pesticides or 
antibiotics to protect plants and livestock 
increases resistance of disease vectors

Extreme weather 
events and reduced 
water availability due 
to climate change
(Section 23.3.4)

Low adaptive capacity of power systems 
might lead to limited energy supply as well 
as higher supply costs during such extreme 
events and conditions.

Increasing risk of power shortages due to limited 
energy supply, e.g., of nuclear power plants due 
to limited cooling water during heat stress

Continued underinvestment in adaptive 
energy systems might increase the risk of 
mismatches between limited energy supply 
during these events and increased demands, 
e.g., during a heat wave.

Asia 

(Chapter 24) 

Rising average 
temperatures and 
more frequent extreme 
temperatures, as well 
as changing rainfall 
patterns (temporally 
and spatially)

Food systems and food production systems 
for key grain crops, particularly rice and 
other cereal crop farming systems, are highly 
susceptible. (Section 24.4.4.3)

Risk of crop failures and lower crop yield also 
can increase the risk of major losses for farmers 
and rural livelihoods. (Section 24.4.4.3)

Increase in Asian population combined 
with rising temperatures affecting food 
production. Upper temperature limit to the 
ability of some food systems to adapt could 
be reached. 

Rising sea level Paddy fields and farmers near the coasts are 
particularly susceptible. (Section 24.4.4.3)

Risk of loss of arable areas due to submergence 
(Section 24.4.4.3)

Migration of farming communities to higher 
elevation areas entails risks for migrants 
and receiving regions.

Projected increase in 
frequency of various 
extreme events (heat 
wave, floods, and 
droughts) and sea 
level rise

Increasing exposure due to convergence 
of livelihood and properties into coastal 
megacities. People in areas that are not 
sufficiently protected against natural hazards 
are particularly susceptible.

Risk of loss of life and assets due to coastal 
floods accompanied by increasing vulnerabilities.

Projected increase in disruptions of basic 
services such as water supply, sanitation, 
energy provision, and transportation 
systems, which themselves could increase 
vulnerabilities

Australasia 

(Chapter 25)

Rising air and sea 
surface temperatures, 
drying trends, reduced 
snow cover, increased 
intensity of severe 
cyclones, ocean 
acidification 
(Section 25.2; Table 
25-1; Figure 25-4; WGI 
AR5 Chapter 14 and 
Atlas)

Species that live in a limited climatic range 
and that suffer from habitat fragmentation 
as well as from external stressors (pollution, 
runoff, fishing, tourism, introduced predators, 
and pests) are especially susceptible. (Sections 
25.6.1, 25.6.2)

Risk of significant change in community 
composition and structure of coral reefs and 
montane ecosystems and risk of loss of some 
native species in Australia (Sections 25.6.1, 
25.6.2, 25.10.2)

Increasing risk from compound extreme 
events across time and space, and 
cumulative adaptation needs, with recovery 
and risk reduction measures hampered 
further by impacts and responses reaching 
across different levels of government 
(Sections 25.10.2, 25.10.3; Box 25-9)

Increased extreme 
rainfall related to flood 
risk in many locations 
(Section 25.2; Table 
25-1)

Adaptation deficit of existing infrastructure 
and settlements to current flood risk; 
expansion and densification of urban areas; 
effective adaptation includes transformative 
changes such as land-use controls and retreat. 
(Sections 25.3, 25.10.2; Box 25-8)

Increased frequency and intensity of flood 
damage to infrastructure and settlements in 
Australia and New Zealand (Box 25-8; Section 
25.10.2)

Continuing sea level 
rise, with projections 
spanning a particularly 
large range and 
continuing beyond 
2100, even under 
mitigation scenarios 
(Section 25.2; Box 25-1; 
WGI AR5 Chapter 13)

Long-lived and high asset value coastal 
infrastructure and low-lying ecosystems 
are highly susceptible. Expansion of coastal 
populations and assets into coastal zones 
increases the exposure. Conflicting priorities 
constrain adaptation options and limit 
effective response strategies. (25.3, Box 25-1)

Increasing risks to coastal infrastructure and 
low-lying ecosystems in Australia and New 
Zealand, with widespread damages toward 
the upper end of projected ranges (Box 25-1; 
Sections 25.6.1, 25.6.2, 25.10.2)

North 
America 

(Chapter 26) 

Increases in frequency 
and /or intensity of 
extreme events, such 
as heavy precipitation, 
river and coastal 
floods, heat waves, 
and droughts 
(Sections 26.2.2, 
26.3.1, 26.8.1)

Physical infrastructure in a declining state 
in urban areas particularly susceptible. Also 
increases in income disparities and limited 
institutional capacities might result in larger 
proportions of people susceptible to these 
stressors due to limited economic resources. 
(Sections 26.7, 26.8.2)

Risk of harm and loss in urban areas, particularly 
in coastal and dry environments due to 
enhanced vulnerabilities of social groups, 
physical systems, and institutional settings 
combined with the increases of extreme weather 
events (Section 26.8.1)

Inability to reduce vulnerability in many 
areas results in an increase in risk more so 
than change in physical hazard. (Section 
26.8.3)

Higher temperatures, 
decreases in runoff, 
and lower soil 
moisture due to 
climate change 
(Sections 26.2, 26.3)

Vulnerability of small rural landholders, 
particularly in Mexican agriculture, and of 
the poor in rural settlements (Sections 26.5, 
26.8.2.2)

Risk of increased losses and decreases in 
agricultural production. Risk of food and job 
insecurity for small landholders and social 
groups in regions exposed to these phenomena 
(Sections 26.5, 26.8.2.2)

Increasing risks of social instability and 
local economic disruption due to internal 
migration (Sections 26.2.1, 26.8.3)
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North 
America 
(continued)

(Chapter 26)

Wildfires and drought 
conditions 
(Box 26-2)

Indigenous groups, low-income residents in 
peri-urban areas, and forest systems (Box 
26-2; Section 26.8.2)

Risk of loss of ecosystem integrity, property loss, 
human morbidity, and mortality due to wildfires 
(Box 26-2; Section 26.8.3)

Extreme storm and 
heat events, air 
pollution, pollen, and 
infectious diseases 
(Section 26.6.1)

Susceptibility of individuals is determined by 
factors such as economic status, preexisting 
illness, age, and access to assets. (Section 
26.6.1)

Increasing risk of extreme temperature-, storm-, 
pollen-, and infectious diseases–related human 
morbidity or mortality (Section 26.6.2)

River and coastal 
floods, and sea level 
rise 
(Sections 26.2.2, 
26.4.2, 26.8.1)

Increasing exposure of populations, property, 
as well as ecosystems, partly resulting from 
overwhelmed drainage networks. Groups and 
economic sectors that highly depend on the 
functioning of different supply chains, public 
health institutions that can be disrupted, and 
groups that have limited coping capacities 
to deal with supply chain interruptions and 
disruptions to their livelihoods are particularly 
susceptible. (Sections 26.7, 26.8.1)

Risk of property damage, supply chain 
disruption, public health, water quality 
impairment, ecosystem disruption, infrastructure 
damage, and social system disruption from 
urban flooding due to river and coastal floods 
and floods of drainage networks (Sections 
26.4.2, 26.8.1)

Multiple risks from interacting hazards on 
populations’ livelihoods, infrastructure, and 
services (Sections 26.7, 26.8.3)

Central 
and South 
America 

(Chapter 27)

Reduced water 
availability in semi-arid 
regions and regions 
dependent on glacier 
meltwater; flooding 
in urban areas due to 
extreme precipitation 
(Sections 27.2.1, 
27.3.3)

Groups that cannot keep agricultural 
livelihoods and are forced to migrate are 
especially vulnerable. Limited infrastructure 
and planning capacity can further increase the 
lack of coping and adaptive capacities to rapid 
changes expected (precipitation), especially 
in large cities.

Risk of loss of human lives, livelihood, and 
property

 

Increase in infectious diseases. Economic 
impacts due to reallocation of populations

Ocean acidification 
and warming 
(Section 27.3.3; Box 
CC-OA)

Sensitivity of coral reef systems to ocean 
acidification and warming

Risk of loss of biodiversity (species) and risk of a 
reduced fishing capacity with respective impacts 
for coastal livelihoods

Economic losses and impact on food 
(fishery) production in certain regions

Extremes of drought /
precipitation 
(Sections 27.2.1, 
27.3.4)

Elevated CO2 decreases nutrient contents 
in plants, especially nitrogen in relation to 
carbon in food products.

Risk of loss of (food) production and productivity 
in some regions where extreme events may 
occur. Need to adjust diet due to decrease in 
food quality (e.g., less protein due to lower 
nitrogen assimilation). Decrease in bioenergy 
production

Strong economic impacts related to the 
need to move crops to more suitable 
regions. Teleconnections (related to food 
quality) related to the intense exportation 
of food by the region. Impacts on energy 
system and carbon emissions with 
consequent increase in fossil fuel demand.

Higher temperatures 
and humidity lead to a 
spread of vector-borne 
diseases in altitude 
and latitude. 
(Section 27.3.7)

People exposed and vulnerable to vector-
borne diseases and an increase in mosquito 
biting rates that increase the probability of 
human infections 

Risk of increase in morbidity and in disability-
adjusted life years (DALYs); risk of loss of human 
lives; risk of decrease in school and labor 
productivity

High economic impacts owing to the 
necessity to increase the financing of 
health programs, as well as the costs of 
DALYs, increase in hospitals and medical 
infrastructure adequate to cope with 
increasing disease incidence rates, and the 
spread of diseases to newer regions

Polar Regions 

(Chapter 28)

Loss of multi-year 
ice and reductions in 
the spatial extent of 
summer sea ice 
(Sections 28.2.5, 
28.3.2, 28.4.1)

Indigenous communities that depend on sea 
ice for traditional livelihoods are vulnerable 
to this hazard, particularly due to loss of 
breeding and foraging platforms for marine 
mammals. 

Risk of loss of traditional livelihoods and food 
sources. 

Top-down shifts in food webs

Ecosystems are vulnerable owing to the shifts 
in the distribution and timing of ice algal and 
ocean phytoplankton blooms.  

Risk of disruption of synchronized timing of 
zooplankton ontogeny and availability of prey. 
Increased variability in secondary production 
while zooplankton adapt to shifts in timing. 
Risks also to local marine food webs.

Bottom up shifts in food webs. Potential 
changes in pelagic and benthic coupling 

Ocean acidification 
(Sections 28.2.2, 
28.3.2)

Tolerance limits of endemic species surpassed. 
Impacts on exoskeleton formation for some 
species and alteration of physiological 
and behavioral properties during larval 
development 

Localized loss of endemic species, local impacts 
on marine food webs

Localized declines in commercial fisheries.  
Local declines in fish, shellfish, seabirds, and 
marine mammals

Shifts in boundaries 
of marine eco-regions 
due to rising water 
temperature, shifts 
in mixed layer 
depth, changes in 
the distribution and 
intensity of ocean 
currents 
(Sections 28.2.2, 
28.3.2)

Marine organisms that are susceptible to 
spatial shifts are particularly vulnerable.

Risk of changes in the structure and function of 
marine systems and potentially species invasions 

Disputes over international fisheries and 
shared stocks
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Polar Regions 
(continued)

(Chapter 28)

Declining sea ice, 
changes in snow 
and ice timing and 
state, decreasing  
predictability of 
weather
(Sections 28.1, 28.4.1)

Many traditional subsistence food sources—
especially for indigenous peoples—such as 
Arctic marine and land mammals, fish, and 
waterfowl. Various traditional livelihoods are 
susceptible to these hazards.

Risk of loss of habitats and changes in migration 
patterns of marine species

Enhancement of risk to food security and 
basic nutrition—especially for indigenous 
peoples—from loss of subsistence foods 
and increased risk to subsistence hunters’, 
herders’, and fishers’ health and safety in 
changing ice conditions

Increased river and 
coastal flooding and 
erosion and thawing 
of permafrost
(Sections 28.2.4, 
28.3.1, 28.3.4)

Rural and remote communities as well as 
urban communities in low-lying Arctic areas 
are exposed. Susceptibility and limited coping 
capacity of community water supplies due to 
potential damages to infrastructure.

Community and public health infrastructure 
damaged resulting in disease from 
contamination and sea water intrusion

Reduced water quality and quantity may 
result in increased rates of infection, other 
medical problems, and hospitalizations.

Extreme and rapidly 
changing weather, 
intense weather and 
precipitation events, 
rapid snow and ice 
melt, changing river 
and sea ice conditions, 
permafrost thaw 
(Section 28.2.4)

People living from subsistence travel and 
hunting, herding, and fishing, for example 
indigenous peoples in remote and isolated 
communities, are particularly susceptible.

Accidents, physical /mental injuries, death, and 
cold-related exposure, injuries, and diseases

Enhanced risks to safe travel or subsistence 
hunting, herding, fishing activities affect 
livelihoods and well-being.

Diminished sea 
ice; earlier sea ice 
melt-out; faster sea 
ice retreat; thinner, 
less predictable ice 
in general; greater 
variability in snow 
melt /freeze; ice, 
weather, winds, 
temperatures, 
precipitation 
(Sections 28.2.5, 
28.2.6, 28.4.1)

Livelihoods of many indigenous peoples (e.g., 
Inuit and Saami) depend upon subsistence 
hunting and access to and favorable 
conditions for animals. These livelihoods 
are susceptible. Also marine ecosystems are 
susceptible (e.g., marine mammals).

Risk of loss of livelihoods and damage due to, 
e.g., more difficult access to marine mammals 
associated with diminishing sea ice (a risk to 
the Inuit), and loss of access by reindeer to their 
forage under snow due to ice layers formed 
by warming winter temperatures and “rain on 
snow” (a risk to the Saami).

Enhanced risk of loss of livelihoods and 
culture of increasing numbers of indigenous 
peoples, exacerbated by increasing loss 
of lands and sea ice for hunting, herding, 
fishing due to enhanced petroleum and 
mineral exploration, and increased maritime 
traffic

Small Islands 

(Chapter 29) 

Increases in intensity 
of tropical cyclones 
(WGI AR5 Sections 
14.6, 14.8.4)

Various countries and communities are 
vulnerable to these hazards because of their 
high dependence on natural and ecological 
systems for security of settlements and 
tourism (Section 29.3.3.1), human health 
(Section 29.3.3.2), and water resources 
(Section 29.3.2).

Risk of loss of ecosystems, settlements, and 
infrastructure, as well as negative impacts on 
human health and island economies (Figure 29-4)

Increased risk of interactions of damages to 
ecosystems, settlements, island economies, 
and risks to human life (Section 29.6; Figure 
29-4)

Ocean warming and 
acidification leading to 
coral bleaching 
(Sections 29.3.1.2, 
30.5.4.2, 30.5.6.1.1, 
30.5.6.2)

Tropical island communities are highly 
dependent on coral reef ecosystems for 
subsistence life styles, food security, coastal 
protection and beach, and reef-based tourist 
economic activity, and hence are highly 
susceptible to the hazard of coral bleaching. 
(Sections 29.3.1.2, 30.6.2.1.2)

Risk of decline and possible loss of coral reef 
ecosystems through thermal stress. Risk of 
serious harm and loss of subsistence lifestyles. 
Risk of loss of coastal protection and beaches, 
risk of loss of tourist revenue (Sections 29.3.1.1, 
29.3.1.2) 

Impacts on human health and loss of 
subsistence lifestyles. Potential increase in 
internal migration /urbanization (Section 
29.3.3.3; Chapter 9)

Sea level rise 
(Sections 29.3.1.1, 
30.3.1.2; WGI AR5 
Section 3.7.1)

Many small island communities and 
associated settlements and infrastructure are 
in low-lying coastal zones (high exposure) and 
are also vulnerable to increasing inundation, 
erosion and wave incursion. (Sections 5.3.2, 
29.3.1.1; Figure 29-2)

Risk of loss and harm due to sea level rise in 
small island communities. Global mean sea 
level is likely to increase by 0.35 to 0.70 m for 
Representative Concentration Pathway (RCP) 4.5 
during the 21st century, threatening low-lying 
coastal areas and atoll islands. (Section 29.4.3, 
Table 29-1; WGI AR5 Section 13.5.1, Table 13.5)

Incremental upwards shift in sea-level 
baselines results in increased frequency and 
extent of marine flooding during high tides 
and episodic storm surges. These events 
could render soils and fresh groundwater 
resources unfit for human use before 
permanent inundation of low-lying areas. 
(Sections 29.3.1.1, 29.3.2, 29.3.3.1, 29.5.1)
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The Ocean 

(Chapter 30)

Increasing ocean 
temperatures.
Increased frequency of 
thermal extremes

Corals and other organisms whose tolerance 
limits are exceeded are particularly susceptible 
(especially CBS, STG, SES, and EUS ocean 
regions). (Sections 6.2.2.1, 6.2.2.2, 30.5.2, 
30.5.4, 30.5.5; Boxes CC-CR, 30.5.6, CC-OA)

Risk of increased mass coral bleaching and 
mortality (loss of coral cover) with severe 
risks for coastal fisheries, tourism, and coastal 
protection (Sections 6.3.2. 6.3.5, 5.4.2.4, 7.2.1.2, 
6.4.1.4, 29.3.1.2, 30.5.2, 30.5.3, 30.5.4, 30.5.5; 
Box CC-CR)

Loss of coastal reef systems, risk of 
decreased food security and reduced 
livelihoods, and reduced coastal protection 
(Sections 7.2.1.2, 30.6.2.1, 30.6.5)

Marine species and ecosystems as well as 
fisheries and coastal livelihoods and tourism 
that cannot cope or adapt to changing 
temperatures and changes in the distribution 
are particularly vulnerable, especially for HLSBS, 
CBS, STG, and EBUE. (Sections 6.3.2, 6.3.4, 
7.3.2.6, 30.5; Box CC-BIO)

Risk for fishery and coastal livelihoods. Fishery 
opportunity changes as stock abundance may 
rise or fall; increased risk of disease and invading 
species impacting ecosystems and fisheries 
(Sections 6.3.5, 6.4.1.1, 6.5.3, 7.3.2.6, 7.4.2, 
29.5.3, 29.5.4)

Significant risk of fishery collapse may 
develop as the capacity of fisheries to resist 
the following is exceeded: a) fundamental 
change to fishery composition, and b) the 
increased migration of disease and other 
organisms. (Sections 6.5.3, 7.5.1.1.3)

Coastal ecosystems and communities that 
might be exposed to phenomena of elevated 
rates of microbial respiration leading to 
reduced oxygen at depth and increased spread 
of dead zones are particularly vulnerable 
(particularly for EBUE, SES, EUS).

Risk of loss of habitats and fishery resources 
as well as losses of key fisheries species. 
Oxygen levels decrease, leading to impacts on 
ecosystems (e.g., loss of habitat) and organisms 
(e.g., physiological performance of fish) resulting 
in reduced capture of key fisheries species.

Increasing risk of loss of livelihoods 

Deep sea life is sensitive to hazards and to 
change given the very constant conditions 
under which it has evolved. (30.1.3.1.3, 
30.5.2, 30.5.5)

Risk of fundamental changes in conditions 
associated with deep sea (e.g., oxygen, pH, 
carbonate, CO2, temperature) drive fundamental 
changes that result in broad-scale changes 
throughout the ocean. (Sections 30.1.3.1.3, 
30.5.2, 30.5.5; Boxes CC-UP, CC-NPP)

Changes in the deep ocean may be a 
prelude to ocean wide changes with 
planetary implications.

Rising ocean 
acidification

Reef systems, corals, and coastal ecosystems 
that are exposed to a reduced rate of 
calcification and greater decalcification 
leading to potential loss of carbonate reef 
systems, corals, molluscs, and other calcifiers 
in key regions, such as the CBS, STG (Section 
6.2.2.2)

Risk of the alteration of ecosystem services 
including risks to food provisioning with impacts 
on fisheries and aquaculture (Sections 6.2.5.3, 
7.2.1.2, 7.3.2, 7.4.2,)

Income and livelihoods for communities 
are reduced as productivity of fisheries and 
aquaculture diminish. (Sections 7.5.1.1.3, 
30.6)

Marine organisms that are susceptible to 
changes in pH and carbonate chemistry imply 
a large number of changes to the physiology 
and ecology of marine organisms (particularly 
in CBS, STG, SES regions). (Sections 6.2.5, 
6.3.4, 30.3.2.2)

Risk of fundamental shifts in ecosystems 
composition as well as organism function 
occur, leading to broad scale and fundamental 
change. Income and livelihoods from dependent 
communities are affected as ecosystem goods 
and services decline, with the prospect that 
recovery may take tens of thousands of years. 
(Section 6.1.1.2)

Risk to ecosystems and livelihoods is 
increased by the potential for interaction 
among ocean warming and acidification to 
create unknown impacts. (Section CC-OA)

Coastal systems are increasingly exposed 
to upwelling in some areas, which results in 
periods of high CO2, low O2 and pH. (Box CC-
UP; Sections 6.2.2.2, 6.2.5.3)

Risk of loss and harm to fishery and aquaculture 
operations and respective livelihoods (e.g., 
oyster cultivation), especially those exposed 
periodically to harmful conditions during 
elevated upwelling, which trigger adaptation 
responses. (Section 30.6.2.1.4)

Background pH and carbonate chemistry 
are also such that harmful conditions 
are always present (avoiding impacts via 
adaptation not possible any more). (Section 
30.6.2.1.4)

Increased stratification 
as a result of ocean 
warming; reduced 
ventilation

Ocean ecosystems are vulnerable due to the 
reduced regeneration of nutrients as mixing 
between the ocean and its surface is reduced 
(EUS, STG, and EBUE). (Sections 6.2, 6.3, 6.5, 
30.5.2, 30.5.4, 30.5.5)

Risk of productivity losses of oceans and 
respective negative impacts on fisheries. The 
concentration of inorganic nutrients in the upper 
layers of the ocean is reduced, leading to lower 
rates of primary productivity. (Box CC-NPP)

Reduced primary productivity of the ocean 
impacts fisheries productivity leading to 
lower catch rates and effects on livelihoods 
(Section 6.4.1.1; Box CC-NPP)

Ecosystems and organisms that are sensitive 
to decreasing oxygen levels (Sections 30.5.2, 
30.5.3, 30.5.5, 30.5.6, 30.5.7)

Increased risk of dead (hypoxic) zones reducing 
key ecosystems and fisheries habitat (Sections 
6.1.1.3, 30.3.2.3)

Changes to wind, 
wave height, and 
storm intensity

Shipping and industrial infrastructure is 
vulnerable to wave and storm intensity. 
(Section 30.6.2)

Risk of increasing losses and damages to 
shipping and industrial infrastructure

Risk of accidents increases for enterprises 
such as shipping, as well as deep sea oil gas 
and mineral extraction.

Table KR-1 (continued)

CBS = Coastal Boundary Systems; EBUE = Eastern Boundary Upwelling Ecosystems; EUS = Equatorial Upwelling Systems; HIC, LIC, MIC = high-, low-, and medium-income 
countries; HLSBS = High-Latitude Spring Bloom Systems; SES = Semi-Enclosed Seas; STG = Sub-Tropical Gyres.

Birkmann, J., R. Licker, M. Oppenheimer, M. Campos, R. Warren, G. Luber, B.C. O’Neill, and K. Takahashi, 2014: Cross-chapter box on a selection of the 
hazards, key vulnerabilities, key risks, and emergent risks identified in the WGII contribution to the fifth assessment report. In: Climate Change 2014: 
Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, 
R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United 
Kingdom and New York, NY, USA, pp. 113-121.
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IPCC WGII AR4 presented the detection of a global fingerprint on natural systems and its 
attribution to climate change (AR4, Chapter 1, SPM Figure 1), but studies from marine systems 
were mostly absent. Since AR4, there has been a rapid increase in studies that focus on climate 
change impacts on marine species, which represents an opportunity to move from more 
anecdotal evidence to examining and potentially attributing detected biological changes within 
the ocean to climate change (Section 6.3; Figure MB-1). Recent changes in populations of marine 
species and the associated shifts in diversity patterns are resulting, at least partly, from climate 
change–mediated biological responses across ocean regions (robust evidence, high agreement, 
high confidence; Sections 6.2, 30.5; Table 6-7).

Poloczanska et al. (2013) assess a potential pattern in responses of ocean life to recent climate 
change using a global database of 208 peer-reviewed papers. Observed responses (n = 1735) 
were recorded from 857 species or assemblages across regions and taxonomic groups, from 
phytoplankton to marine reptiles and mammals (Figure MB-1). Observations were defined as 
those where the authors of a particular paper assessed the change in a biological parameter 
(including distribution, phenology, abundance, demography, or community composition) and, if 
change occurred, the consistency of the change with that expected under climate change. Studies 
from the peer-reviewed literature were selected using three criteria: (1) authors inferred or 
directly tested for trends in biological and climatic variables; (2) authors included data after 1990; 
and (3) observations spanned at least 19 years, to reduce bias resulting from biological responses 
to short-term climate variability. 

The results of this meta-analysis show that climate change has already had widespread 
impacts on species’ distribution, abundance, phenology, and subsequently, species richness and 
community composition across a broad range of taxonomic groups (plankton to top predators). 
Of the observations that showed a response in either direction, changes in phenology, distribution 
and abundance were overwhelmingly (81%) in a direction that was consistent with theoretical 
responses to climate change (Section 6.2). Knowledge gaps exist, especially in equatorial sub-
regions and the Southern Hemisphere (Figure MB-1). 

The timing of many biological events (phenology) had an earlier onset. For example, over the last 
50 years, spring events shifted earlier for many species with an average advancement of 4.4 ± 0.7 
days per decade (mean ± SE) and summer events by 4.4 ± 1.1 days per decade (robust evidence, 
high agreement, high confidence) (Figure MB-2). Phenological observations included in the study 
range from shifts in peak abundance of phytoplankton and zooplankton, to reproduction and 
migration of invertebrates, fishes, and seabirds (Sections 6.3.2, 30.5). 
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The distributions of benthic, pelagic, and demersal species and communities have shifted by up to a thousand kilometers, although the 
range shifts have not been uniform across taxonomic groups or ocean regions (Sections 6.3.2, 30.5) (robust evidence, high agreement, high 
confidence). Overall, leading range edges expanded in a poleward direction at 72.0 ± 13.5 km per decade and trailing edges contracted in a 
poleward direction at 15.8 ± 8.7 km per decade (Figure MB-2), revealing much higher current rates of migration than the potential maximum 
rates reported for terrestrial species (Figure 4-6) despite slower warming of the ocean than land surface (WGI Section 3.2). 

Poleward distribution shifts have resulted in increased species richness in mid- to high-latitude regions (Hiddink and ter Hofstede, 2008) and 
changing community structure (Simpson et al., 2011; see also Section 28.2.2). Increases in warm-water components of communities concurrent 
with regional warming have been observed in mid- to high-latitude ocean regions including the Bering Sea, Barents Sea, Nordic Sea, North 
Sea, and Tasman Sea (Box 6.1; Section 30.5). Observed changes in species composition of catches from 1970–2006 that are partly attributed to 
long-term ocean warming suggest increasing dominance of warmer water species in subtropical and higher latitude regions, and reduction in 
abundance of subtropical species in equatorial waters (Cheung et al., 2013), with implications for fisheries (Sections 6.5, 7.4.2, 30.6.2.1).

The magnitude and direction of distribution shifts can be related to temperature velocities (i.e., the speed and direction at which isotherms 
propagate across the ocean’s surface (Section 30.3.1.1; Burrows et al., 2011). Pinsky et al. (2013) showed that shifts in both latitude and depth 
of benthic fish and crustaceans could be explained by climate velocity with remarkable accuracy, using a database of 128 million individuals 
across 360 marine taxa from surveys of North American coastal waters conducted over 1968–2011. Poloczanska et al. (2013) found that 
faster distribution shifts generally occur in regions of highest surface temperature velocity, such as the North Sea and sub-Arctic Pacific Ocean. 
Observed marine species shifts, since approximately the 1950s, have generally been able to track observed velocities (Figure MB-3), with 
phyto- and zooplankton distribution shifts vastly exceeding climate velocities observed over most of the ocean surface, but with considerable 
variability within and among taxonomic groups (Poloczanska et al., 2013).
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Type of observed change
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Proportion of observed changes

Total number of observations within each region / locality41

Figure MB-1 | 1735 observed responses to climate change from 208 single- and multi-species studies. Data shown include changes that are attributed (at least partly) to 
climate change (blue), changes that are inconsistent with climate change (red), and no change (orange). Each circle represents the center of a study area. Where points fall on 
land, it is because they are centroids of distributions that surround an island or peninsula. Studies encompass areas from single sites (e.g., seabird breeding colony) to large 
ocean regions (e.g., continuous plankton recorder surveys in north-east Atlantic). For regions (indicated by blue shading) and localities with large numbers of observations, pie 
charts summarize the relative proportions of the three types of observed changes (consistent with climate change, inconsistent with climate change, and no change) in those 
regions or localities.  The numbers indicate the total observations within each region or locality. Note: 57% of the studies included were published since AR4. (From Poloczanska 
et al., 2013).
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Biogeographic shifts are also influenced by other factors such as currents, nutrient and stratification changes, light levels, sea ice, species’ 
interactions, habitat availability and fishing, some of which can be independently influenced by climate change (Section 6.3). Rate and pattern 
of biogeographic shifts in sedentary organisms and benthic macroalgae are complicated by the influence of local dynamics and topographic 
features (islands, channels, coastal lagoons, e.g., of the Mediterranean (Bianchi, 2007), coastal upwelling e.g., (Lima et al., 2007)). Geographical 
barriers constrain range shifts and may cause a loss of endemic species (Ben Rais Lasram et al., 2010), with associated niches filled by alien 
species, either naturally migrating or artificially introduced (Philippart et al., 2011). 

Whether marine species can continue to keep pace as rates of warming, hence climate velocities, increase (Figure MB-3b) is a key uncertainty. 
Climate velocities on land are expected to outpace the ability of many terrestrial species to track climate velocities this century (Section 4.3.2.5; 
Figure 4-6). For marine species, the observed rates of shift are generally much faster than those for land species, particularly for primary 
producers and lower trophic levels (Poloczanska et al., 2013). Phyto- and zooplankton communities (excluding larval fish) have extended 
distributions at remarkable rates (Figure MB-3b), such as in the Northeast Atlantic (Section 30.5.1) with implications for marine food webs. 

Geographical range shifts and depth distribution vary between coexisting marine species (Genner et al., 2004; Perry et al., 2005; Simpson et 
al., 2011) as a consequence of the width of species-specific thermal windows and associated vulnerabilities (Figure 6-5). Warming therefore 
causes differential changes in growth, reproductive success, larval output, early juvenile survival, and recruitment, implying shifts in the relative 
performance of animal species and, thus, their competitiveness (Pörtner and Farrell, 2008; Figure 6-7A). Such effects may underlie abundance 
losses or local extinctions, “regime shifts” between coexisting species, or critical mismatches between predator and prey organisms, resulting 
in changes in local and regional species richness, abundance, community composition, productivity, energy flows, and invasion resistance. 
Even among Antarctic stenotherms, differences in biological responses related to mode of life, phylogeny and associated metabolic capacities 
exist (Section 6.3.1.4). As a consequence, marine ecosystem functions may be substantially reorganized at the regional scale, potentially 
triggering a range of cascading effects (Hoegh-Guldberg and Bruno, 2010). A focus on understanding the mechanisms underpinning the nature 
and magnitude of responses of marine organisms to climate change can help forecast impacts and the associated costs to society as well as 
facilitate adaptive management strategies formitigating these impacts (Sections 6.3, 6.4).
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Figure MB-2 | Rates of change in distribution (kilometers per decade) for marine taxonomic groups, measured at the leading edges (red) and trailing edges (green). Average 
distribution shifts were calculated using all data, regardless of range location, and are in dark blue. Distribution shifts have been square-root transformed; standard errors may be 
asymmetric as a result. Positive distribution changes are consistent with warming (into previously cooler waters, generally poleward). Means ± standard error are shown, along 
with number of observations. Non-bony fishes include sharks, rays, lampreys, and hagfish. (From Poloczanska et al., 2013).
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Slow areas
Global median

Fast areas

Figure MB-3 | (a) Rate of climate change for the ocean (sea surface temperature (SST) °C yr -1). (b) Corresponding climate velocities for the ocean and median velocity from land 
(adapted from Burrows et al., 2011). (c) Observed rates of displacement of marine taxonomic groups based on observations over 1900–2010. The dotted bands give an example 
of interpretation. Rates of climate change of 0.01 °C yr-1 correspond to approximately 3.3 km yr-1 median climate velocity in the ocean. When compared to observed rates of 
displacement (c), many marine taxonomic groups have been able to track these velocities. For phytoplankton and zooplankton the rates of displacement greatly exceed median 
climate velocity for the ocean and, for phytoplankton exceed velocities in fast areas of the ocean approximately 10.0 km yr-1. All values are calculated for ocean surface with the 
exclusion of polar seas (Figure 30-1a). (a) Observed rates of climate  change for ocean SST (green line) are derived from the Hadley Centre Interpolated SST 1.1 (HadISST1.1) 
data set, and all other rates are calculated based on the average of the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model ensembles (Table SM30-3) for the 
historical period and for the future based on the four Representative Concentration Pathway (RCP) scenarios. Data were smoothed using a 20-year sliding window. (b) Median 
climate velocity over the global ocean surface (light blue line; excluding polar seas) calculated from HadSST1.1 data set over 1960–2009 using the methods of Burrows et al. 
(2011). Median velocities representative of ocean regions of slow velocities such as the Pacific subtropical gyre (dark blue line) and of high velocities such as the Coral Triangle or 
the North Sea (purple line) shown. Median rates over global land surface (red line) over 1960–2009 calculated using Climate Research Unit data set CRU TS3.1. Figure 30-3 
shows climate velocities over the ocean surface calculated over 1960–2009. (c) Rates of displacement for marine taxonomic groups estimated by Poloczanska et al. (2013) using 
published studies. Note the displacement rates for phytoplankton exceed the axis, so values are given.
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Anthropogenic ocean acidification and global warming share the same primary cause, which is 
the increase of atmospheric CO2 (Figure OA-1A; WGI, Section 2.2.1). Eutrophication, loss of sea ice, 
upwelling and deposition of atmospheric nitrogen and sulfur all exacerbate ocean acidification 
locally (Sections 5.3.3.6, 6.1.1, 30.3.2.2).

Chemistry and Projections 
The fundamental chemistry of ocean acidification is well understood (robust evidence, high 
agreement). Increasing atmospheric concentrations of CO2 result in an increased flux of CO2 into a 
mildly alkaline ocean, resulting in a reduction in pH, carbonate ion concentration, and the capacity 
of seawater to buffer changes in its chemistry (very high confidence). The changing chemistry of 
the surface layers of the open ocean can be projected at the global scale with high accuracy using 
projections of atmospheric CO2 levels (Figure CC-OA-1B). Observations of changing upper ocean 
CO2 chemistry over time support this linkage (WGI Table 3.2 and Figure 3.18; Figures 30-8, 30-9). 
Projected changes in open ocean, surface water chemistry for the year 2100 based on representative 
concentration pathways (WGI, Figure 6.28) compared to pre-industrial values range from a pH 
change of –0.14 units with Representative Concentration Pathway (RCP)2.6 (421 ppm CO2, +1°C, 
22% reduction of carbonate ion concentration) to a pH change of –0.43 units with RCP8.5 (936 
ppm CO2, +3.7ºC, 56% reduction of carbonate ion concentration). Projections of regional changes, 
especially in the highly complex coastal systems (Sections 5.3.3.5, 30.3.2.2), in polar regions (WGI 
Section 6.4.4), and at depth are more difficult but generally follow similar trends. 

Biological, Ecological, and Biogeochemical Impacts
Investigations of the effect of ocean acidification on marine organisms and ecosystems have a 
relatively short history, recently analyzed in several meta-analyses (Sections 6.3.2.1, 6.3.5.1). A wide 
range of sensitivities to projected rates of ocean acidification exists within and across diverse groups 
of organisms, with a trend for greater sensitivity in early life stages (high confidence; Sections 
5.4.2.2, 5.4.2.4, 6.3.2). A pattern of positive and negative impacts emerges (high confidence; Figure 
OA-1C) but key uncertainties remain in our understanding of the impacts on organisms, life histories, 
and ecosystems. Responses can be influenced, often exacerbated by other drivers, such as warming, 
hypoxia, nutrient concentration, and light availability (high confidence; Sections 5.4.2.4, 6.3.5).

Growth and primary production are stimulated in seagrass and some phytoplankton (high 
confidence; Sections 5.4.2.3, 6.3.2.2, 6.3.2.3, 30.5.6). Harmful algal blooms could become more 
frequent (limited evidence, medium agreement). Ocean acidification may stimulate nitrogen fixation 
(limited evidence, low agreement; 6.3.2.2). It decreases the rate of calcification of most, but not 
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all, sea floor calcifiers (medium agreement, robust evidence) such as reef-building corals (Box CC-CR), coralline algae, bivalves, and gastropods, 
reducing the competitiveness with non-calcifiers (Sections 5.4.2.2, 5.4.2.4, 6.3.2.5). Ocean warming and acidification promote higher rates of 
calcium carbonate dissolution resulting in the net dissolution of carbonate sediments and frameworks and loss of associated habitat (medium 
confidence; 5.4.2.4, 6.3.2.5, 6.3.5.4). Some corals and temperate fishes experience disturbances to behavior, navigation, and their ability to tell 
conspecifics from predators (Section 6.3.2.4). However, there is no evidence for these effects to persist on evolutionary time scales in the few 
groups analyzed (Section 6.3.2). 

Some phytoplankton and molluscs displayed adaptation to ocean acidification in long-term experiments (limited evidence, medium agreement; 
Section 6.3.2.1), indicating that the long-term responses could be less than responses obtained in short-term experiments. However, mass 
extinctions in Earth history occurred during much slower rates of ocean acidification, combined with other drivers changing, suggesting that 
evolutionary rates are not fast enough for sensitive animals and plants to adapt to the projected rate of future change (medium confidence; 
Section 6.1.2).

Projections of ocean acidification effects at the ecosystem level are made difficult by the diversity of species-level responses. Differential 
sensitivities and associated shifts in performance and distribution will change predator–prey relationships and competitive interactions (Sections 
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Figure OA-1 | (a) Overview of the chemical, biological, and socio-economic impacts of ocean acidification and of policy options (adapted from Turley and Gattuso, 2012). (b) Multi-model 
simulated time series of global mean ocean surface pH (on the total scale) from Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model simulations from 1850 to 2100. 
Projections are shown for emission scenarios Representative Concentration Pathway (RCP)2.6 (blue) and RCP8.5 (red) for the multi-model mean (solid lines) and range across the 
distribution of individual model simulations (shading). Black (gray shading) is the modeled historical evolution using historical reconstructed forcings. The models that are included are those 
from CMIP5 that simulate the global carbon cycle while being driven by prescribed atmospheric CO2 concentrations (WGI AR5 Figures SPM.7 and TS.20). (c) Effect of near-future 
acidification (seawater pH reduction of ≤0.5 units) on major response variables estimated using weighted random effects meta-analyses, with the exception of survival, which is not 
weighted (Kroeker et al., 2013). The log-transformed response ratio (lnRR) is the ratio of the mean effect in the acidification treatment to the mean effect in a control group. It indicates 
which process is most uniformly affected by ocean acidification, but large variability exists between species. Significance is determined when the 95% bootstrapped confidence interval 
does not cross zero. The number of experiments used in the analyses is shown in parentheses.  The * denotes a statistically significant effect.
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6.3.2.5, 6.3.5, 6.3.6), which could impact food webs and higher trophic levels (limited evidence, high agreement). Natural analogues at CO2 vents 
indicate decreased species diversity, biomass, and trophic complexity of communities (Box CC-CR; Sections 5.4.2.3, 6.3.2.5, 30.3.2.2, 30.5). Shifts in 
community structure have also been documented in regions with rapidly declining pH (Section 5.4.2.2). 

Owing to an incomplete understanding of species-specific responses and trophic interactions, the effect of ocean acidification on global 
biogeochemical cycles is not well understood (limited evidence, low agreement) and represents an important knowledge gap. The additive, 
synergistic, or antagonistic interactions of factors such as temperature, concentrations of oxygen and nutrients, and light are not sufficiently 
investigated yet. 

Risks, Socioeconomic Impacts, and Costs
The risks of ocean acidification to marine organisms, ecosystems, and ultimately to human societies, include both the probability that ocean 
acidification will affect fundamental physiological and ecological processes of organisms (Section 6.3.2.1), and the magnitude of the resulting 
impacts on ecosystems and the ecosystem services they provide to society (Box 19-2). For example, ocean acidification under RCP4.5 to RCP8.5 
will impact formation and maintenance of coral reefs (high confidence; Box CC-CR, Section 5.4.2.4) and the goods and services that they provide 
such as fisheries, tourism, and coastal protection (limited evidence, high agreement; Box CC-CR; Sections 6.4.1.1,19.5.2, 27.3.3, 30.5, 30.6). Ocean 
acidification poses many other potential risks, but these cannot yet be quantitatively assessed because of the small number of studies available, 
particularly on the magnitude of the ecological and socioeconomic impacts (Section 19.5.2).

Global estimates of observed or projected economic costs of ocean acidification do not exist. The largest uncertainty is how the impacts on lower 
trophic levels will propagate through the food webs and to top predators. However, there are a number of instructive examples that illustrate 
the magnitude of potential impacts of ocean acidification. A decrease of the production of commercially exploited shelled molluscs (Section 
6.4.1.1) would result in a reduction of USA production of 3 to 13% according to the Special Report on Emission Scenarios (SRES) A1FI emission 
scenario (low confidence). The global cost of production loss of molluscs could be more than US$100 billion by 2100 (limited evidence, medium 
agreement). Models suggest that ocean acidification will generally reduce fish biomass and catch (low confidence) and that complex additive, 
antagonistic, and/or synergistic interactions will occur with other environmental (warming) and human (fisheries management) factors (Section 
6.4.1.1). The annual economic damage of ocean-acidification–induced coral reef loss by 2100 has been estimated, in 2012, to be US$870 and 528 
billion, respectively for the A1 and B2 SRES emission scenarios (low confidence; Section 6.4.1). Although this number is small compared to global 
gross domestic product (GDP), it can represent a very large GDP loss for the economies of many coastal regions or small islands that rely on the 
ecological goods and services of coral reefs (Sections 25.7.5, 29.3.1.2).

Mitigation and Adaptation
Successful management of the impacts of ocean acidification includes two approaches: mitigation of the source of the problem (i.e., reduce 
anthropogenic emissions of CO2) and/or adaptation by reducing the consequences of past and future ocean acidification (Section 6.4.2.1). 
Mitigation of ocean acidification through reduction of atmospheric CO2 is the most effective and the least risky method to limit ocean acidification 
and its impacts (Section 6.4.2.1). Climate geoengineering techniques based on solar radiation management will not abate ocean acidification 
and could increase it under some circumstances (Section 6.4.2.2). Geoengineering techniques to remove CO2 from the atmosphere could directly 
address the problem but are very costly and may be limited by the lack of CO2 storage capacity (Section 6.4.2.2). In addition, some ocean-
based approaches, such as iron fertilization, would only relocate ocean acidification from the upper ocean to the ocean interior, with potential 
ramifications on deep water oxygen levels (Sections 6.4.2.2, 30.3.2.3,  30.5.7). A low-regret approach, with relatively limited effectiveness, is to 
limit the number and the magnitude of drivers other than CO2, such as nutrient pollution (Section 6.4.2.1). Mitigation of ocean acidification at 
the local level could involve the reduction of anthropogenic inputs of nutrients and organic matter in the coastal ocean (Section 5.3.4.2). Some 
adaptation strategies include drawing water for aquaculture from local watersheds only when pH is in the right range, selecting for less sensitive 
species or strains, or relocating industries elsewhere (Section 6.4.2.1).

Kroeker, K., R.C. Kordas, A. Ryan, I. Hendriks, L. Ramajo, G. Singh, C. Duarte, and J.-P. Gattuso, 2013: Impacts of ocean acidification on marine organisms: quantifying 
sensitivities and interaction with warming. Global Change Biology, 19, 1884-1896.

Turley, C. and J.-P. Gattuso, 2012: Future biological and ecosystem impacts of ocean acidification and their socioeconomic-policy implications. Current Opinion in 
Environmental Sustainability, 4, 278-286.
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Net Primary Production (NPP) is the rate of photosynthetic carbon fixation minus the fraction of 
fixed carbon used for cellular respiration and maintenance by autotrophic planktonic microbes 
and benthic plants (Sections 6.2.1, 6.3.1). Environmental drivers of NPP include light, nutrients, 
micronutrients, CO2, and temperature (Figure PP-1a). These drivers, in turn, are influenced by 
oceanic and atmospheric processes, including cloud cover; sea ice extent; mixing by winds, waves, 
and currents; convection; density stratification; and various forms of upwelling induced by eddies, 
frontal activity, and boundary currents. Temperature has multiple roles as it influences rates 
of phytoplankton physiology and heterotrophic bacterial recycling of nutrients, in addition to 
stratification of the water column and sea ice extent (Figure PP-1a). Climate change is projected 
to strongly impact NPP through a multitude of ways that depend on the regional and local 
physical settings (WGI AR5, Chapter 3), and on ecosystem structure and functioning (medium 
confidence; Sections 6.3.4, 6.5.1). The influence of environmental drivers on NPP causes as much 
as a 10-fold variation in regional productivity with nutrient-poor subtropical waters and light-
limited Arctic waters at the lower range and productive upwelling regions and highly eutrophic 
coastal regions at the upper range (Figure PP-1b). 

The oceans currently provide ~50 × 1015 g C yr–1, or about half of global NPP (Field et al., 1998). 
Global estimates of NPP are obtained mainly from satellite remote sensing (Section 6.1.2), 
which provides unprecedented spatial and temporal coverage, and may be validated regionally 
against oceanic measurements. Observations reveal significant changes in rates of NPP when 
environmental controls are altered by episodic natural perturbations, such as volcanic eruptions 
enhancing iron supply, as observed in high-nitrate low-chlorophyll waters of the Northeast Pacific 
(Hamme et al., 2010). Climate variability can drive pronounced changes in NPP (Chavez et al., 
2011), such as from El Niño to La Niña transitions in Equatorial Pacific, when vertical nutrient and 
trace element supply are enhanced (Chavez et al., 1999). 

Multi-year time series records of NPP have been used to assess spatial trends in NPP in recent 
decades. Behrenfeld et al. (2006), using satellite data, reported a prolonged and sustained global 
NPP decrease of 190 × 1012 g C yr–1, for the period 1999–2005—an annual reduction of 0.57% 
of global NPP. In contrast, a time series of directly measured NPP between 1988 and 2007 by 
Saba et al. (2010) (i.e., in situ incubations using the radiotracer 14C-bicarbonate) revealed an 
increase (2% yr–1) in NPP for two low-latitude open ocean sites. This discrepancy between in situ 
and remotely sensed NPP trends points to uncertainties in either the methodology used and/
or the extent to which discrete sites are representative of oceanic provinces (Saba et al., 2010, 
2011). Modeling studies have subsequently revealed that the <15-year archive of satellite-
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Figure PP-1 | (a) Environmental factors controlling Net Primary Production (NPP). NPP is controlled mainly by three basic processes: (1) light conditions in the surface ocean, that 
is, the photic zone where photosynthesis occurs; (2) upward flux of nutrients and micronutrients from underlying waters into the photic zone, and (3) regeneration of nutrients and 
micronutrients via the breakdown and recycling of organic material before it sinks out of the photic zone. All three processes are influenced by physical, chemical, and biological 
processes and vary across regional ecosystems. In addition, water temperature strongly influences the upper rate of photosynthesis for cells that are resource-replete. Predictions of 
alteration of primary productivity under climate change depend on correct parameterizations and simulations of each of these variables and processes for each region. (b) Annual 
composite map of global areal NPP rates (derived from Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua satellite climatology from 2003–2012; NPP was calculated 
with the Carbon-based Productivity Model (CbPM; Westberry et al., 2008)). Overlaid is a grid of (thin black lines) that represent 51 distinct global ocean biogeographical provinces 
(after Longhurst, 1998 and based on Boyd and Doney, 2002). The characteristics and boundaries of each province are primarily set by the underlying regional ocean physics and 
chemistry. White areas = no data. (Figure courtesy of Toby Westberry (OSU) and Ivan Lima (WHOI), satellite data courtesy of NASA Ocean Biology Processing Group.)
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derived NPP is insufficient to distinguish climate-change mediated shifts in NPP from those driven by natural climate variability (Henson et al., 
2010; Beaulieu et al., 2013). Although multi-decadal, the available time series of oceanic NPP measurements are also not of sufficient duration 
relative to the time scales of longer-term climate variability modes as for example Atlantic Multi-decadal Oscillation (AMO), with periodicity of 
60-70 years, Figure 6-1). Recent attempts to synthesize longer (i.e., centennial) records of chlorophyll as a proxy for phytoplankton stocks (e.g., 
Boyce et al., 2010) have been criticized for relying on questionable linkages between different proxies for chlorophyll over a century of records 
(e.g., Rykaczewski and Dunne, 2011). 

Models in which projected climate change alters the environmental drivers of NPP provide estimates of spatial changes and of the rate of 
change of NPP. For example, four global coupled climate–ocean biogeochemical Earth System Models (WGI AR5 Chapter 6) projected an 
increase in NPP at high latitudes as a result of alleviation of light and temperature limitation of NPP, particularly in the high-latitude  biomes 
(Steinacher et al., 2010). However, this regional increase in NPP was more than offset by decreases in NPP at lower latitudes and at mid-
latitudes due to the reduced input of macronutrients into the photic zone. The reduced mixed-layer depth and reduced rate of circulation may 
cause a decrease in the flux of macronutrients to the euphotic zone (Figure 6-2). These changes to oceanic conditions result in a reduction in 
global mean NPP by 2 to 13% by 2100 relative to 2000 under a high emission scenario (Polovina et al., 2011; SRES (Special Report on Emission 
Scenarios) A2, between RCP6.0 and RCP8.5). This is consistent with a more recent analysis based on 10 Earth System Models (Bopp et al., 
2013), which project decreases in global NPP by 8.6 (±7.9), 3.9 (±5.7), 3.6 (±5.7), and 2.0 (±4.1) % in the 2090s relative to the 1990s, under 
the scenarios RCP8.5, RCP6.0, RCP4.5, and RCP2.6, respectively. However, the magnitude of projected changes varies widely between models 
(e.g., from 0 to 20% decrease in NPP globally under RCP 8.5). The various models show very large differences in NPP at regional scales (i.e., 
provinces, see Figure PP-1b). 

Model projections had predicted a range of changes in global NPP from an increase (relative to preindustrial rates) of up to 8.1% under an 
intermediate scenario (SRES A1B, similar to RCP6.0; Sarmiento et al., 2004; Schmittner et al., 2008) to a decrease of 2-20% under the SRES A2 
emission scenario (Steinacher et al., 2010). These projections did not consider the potential contribution of primary production derived from 
atmospheric nitrogen fixation in tropical and subtropical regions, favoured by increasing stratification and reduced nutrient inputs from mixing. 
This mechanism is potentially important, although such episodic increases in nitrogen fixation are not sustainable without the presence of 
excess phosphate (e.g., Moore et al., 2009; Boyd et al., 2010). This may lead to an underestimation of NPP (Mohr et al., 2010; Mulholland et al., 
2012; Wilson et al., 2012), however, the extent of such underestimation is unknown (Luo et al., 2012).

Care must be taken when comparing global, provincial (e.g., low-latitude waters, e.g., Behrenfeld et al., 2006) and regional trends in NPP 
derived from observations, as some regions have additional local environmental influences such as enhanced density stratification of the upper 
ocean from melting sea ice. For example, a longer phytoplankton growing season, due to more sea ice–free days, may have increased NPP 
(based on a regionally validated time-series of satellite NPP) in Arctic waters (Arrigo and van Dijken, 2011) by an average of 8.1x1012 g C yr−1 
between 1998 and 2009. Other regional trends in NPP are reported in Sections 30.5.1 to 30.5.6. In addition, although future model projections 
of global NPP from different models (Steinacher et al., 2010; Bopp et al., 2013) are comparable, regional projections from each of the models 
differ substantially. This raises concerns as to which aspect(s) of the different model NPP parameterizations are responsible for driving regional 
differences in NPP, and moreover, how accurate model projections are of global NPP.

From a global perspective, open ocean NPP will decrease moderately by 2100 under both low- (SRES B1 or RCP4.5) and high-emission 
scenarios (medium confidence; SRES A2 or RCPs 6.0, 8.5, Sections 6.3.4, 6.5.1), paralleled by an increase in NPP at high latitudes and 
a decrease in the tropics (medium confidence). However, there is limited evidence and low agreement on the direction, magnitude and 
differences of a change of NPP in various ocean regions and coastal waters projected by 2100 (low confidence). 
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Information about the likelihood of regional climate change, assessed by Working Group I (WGI), 
is foundational for the Working Group II assessment of climate-related risks. To help communicate 
this assessment, the regional chapters of WGII present a coordinated set of regional climate 
figures, which summarize observed and projected change in annual average temperature and 
precipitation during the near term and the longer term for RCP2.6 and RCP8.5. These WGII regional 
climate summary figures use the same temperature and precipitation fields that are assessed in 
WGI Chapter 2 and WGI Chapter 12, with spatial boundaries, uncertainty metrics, and data classes 
tuned to support the WGII assessment of climate-related risks and options for risk management. 
Additional details on regional climate and regional climate processes can be found in WGI Chapter 
14 and WGI Annex 1.

The WGII maps of observed annual temperature and precipitation use the same source data, 
calculations of data sufficiency, and calculations of trend significance as WGI Chapter 2 and WGI 
Figures SPM.1 and SPM.2. (A full description of the observational data selection and significance 
testing can be found in WGI Box 2.2.) Observed trends are determined by linear regression 
over the 1901–2012 period of Merged Land–Ocean Surface Temperature (MLOST) for annual 
temperature, and over the 1951–2010 period of Global Precipitation Climatology Centre (GPCC) 
for annual precipitation. Data points on the maps are classified into three categories, reflecting the 
categories used in WGI Figures SPM.1 and SPM.2:
1) Solid colors indicate areas where (a) sufficient data exist to permit a robust estimate of the 

trend (i.e., only for grid boxes with greater than 70% complete records and more than 20% 
data availability in the first and last 10% of the time period), and (b) the trend is significant 
at the 10% level (after accounting for autocorrelation effects on significance testing). 

2) Diagonal lines indicate areas where sufficient data exist to permit a robust estimate of the 
trend, but the trend is not significant at the 10% level.

3) White indicates areas where there are not sufficient data to permit a robust estimate of the 
trend. 

The WGII maps of projected annual temperature and precipitation are based on the climate model 
simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012), 
which also form the basis for the figures presented in WGI (including WGI Chapters 12, 14, and 
Annex I). The CMIP5 archive includes output from Atmosphere–Ocean General Circulation Models 
(AOGCMs), AOGCMs with coupled vegetation and/or carbon cycle components, and AOGCMs with 
coupled atmospheric chemistry components. The number of models from which output is available, 
and the number of realizations of each model, vary between the different CMIP5 experiments. 
The WGII regional climate maps use the same source data as WGI Chapter 12 (e.g., Box 12.1 Figure 
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1), including the WGI multi-model mean values; the WGI individual model values; the WGI measure of baseline (“internal”) variability; and the 
WGI time periods for the reference (1986–2005), mid-21st century (2046–2065), and late-21st century (2081–2100) periods. The full description 
of the selection of models, the selection of realizations, the definition of internal variability, and the interpolation to a common grid can be found 
in WGI Chapter 12 and Annex I.

In contrast to the Coupled Model Intercomparison Project Phase 3 (CMIP3) (Meehl et al., 2007), which used the IPCC Special Report on Emission 
Scenarios (SRES) emission scenarios (IPCC, 2000), CMIP5 uses the Representative Concentration Pathways (RCPs) (van Vuuren et al., 2011) to 
characterize possible trajectories of climate forcing over the 21st century. The WGII regional climate projection maps include RCP2.6 and RCP8.5, 
which represent the high and low end of the RCP range at the end of the 21st century. Projected changes in global mean temperature are 
similar across the RCPs over the next few decades (Figure RC-1; WGI Figure 12.5). During this near-term era of committed climate change, risks 
will evolve as socioeconomic trends interact with the changing climate. In addition, societal responses, particularly adaptations, will influence 
near-term outcomes. In the second half of the 21st century and beyond, the magnitude of global temperature increase diverges across the RCPs 
(Figure RC-1; WGI Figure 12.5). For this longer-term era of climate options, near-term and longer-term mitigation and adaptation, as well as 
development pathways, will determine the risks of climate change. The benefits of mitigation and adaptation thereby occur over different but 
overlapping time frames, and present-day choices thus affect the risks of climate change throughout the 21st century.

The projection maps plot differences in annual average temperature and precipitation between the future and reference periods (Figures RC-2 
and RC-3), categorized into four classes. The classes are constructed based on the IPCC uncertainty guidance, providing a quantitative basis for 
assigning likelihood (Mastrandrea et al., 2010), with likely defined as 66 to 100% and very likely defined as 90 to 100%.
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Figure RC-1 | Observed and projected changes in global annual average temperature. Values are expressed relative to 1986–2005. Black lines show the Goddard 
Institute for Space Studies Surface Temperature Analysis (GISTEMP), National Climate Data Center Merged Land–Ocean Surface Temperature (NCDC-MLOST), and 
Hadley Centre/Climatic Research Unit gridded surface temperature data set 4.2 (HadCRUT4.2) estimates from observational measurements. Blue and red lines and 
shading denote the ensemble mean and ±1.64 standard deviation range, based on Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations from 32 
models for Representative Concentration Pathway (RCP) 2.6 and 39 models for RCP8.5.

The classifications in the WGII regional climate projection figures are based on two aspects of likelihood (e.g., WGI Box 12.1 and Knutti et al., 
2010). The first is the likelihood that projected changes exceed differences arising from internal climate variability (e.g., Tebaldi et al., 2011). The 
second is agreement among models on the sign of change (e.g., Christensen et al., 2007; and IPCC, 2012). 

The four classifications of projected change depicted in the WGII regional climate maps are:
1) Solid colors indicate areas with very strong agreement, where the multi-model mean change is greater than twice the baseline variability 

(natural internal variability in 20-year means), and greater than or equal to 90% of models agree on sign of change. These criteria (and the 
areas that fall into this category) are identical to the highest confidence category in WGI Box 12.1. This category supersedes other categories 
in the WGII regional climate maps. 

2) Colors with white dots indicate areas with strong agreement, where 66% or more of models show change greater than the baseline 
variability, and 66% or more of models agree on sign of change. 

3) Gray indicates areas with divergent changes, where 66% or more of models show change greater than the baseline variability, but fewer 
than 66% agree on sign of change. 

4) Colors with diagonal lines indicate areas with little or no change, where fewer than 66% of models show change greater than the baseline 
variability. It should be noted that areas that fall in this category for the annual average could still exhibit significant change at seasonal, 
monthly, and/or daily time scales.
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Figure RC-2 | Observed and projected changes in annual average surface temperature. (A) Map of observed annual average temperature change from 1901 to 2012, derived 
from a linear trend where sufficient data permit a robust estimate (i.e., only for grid boxes with greater than 70% complete records and more than 20% data availability in the 
first and last 10% of the time period); other areas are white. Solid colors indicate areas where trends are significant at the 10% level (after accounting for autocorrelation 
effects on significance testing). Diagonal lines indicate areas where trends are not significant. Observed data (range of grid-point values: –0.53 to +2.50°C over period) are 
from WGI AR5 Figures SPM.1 and 2.21. (B) Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model mean projections of annual average temperature changes for 
2046–2065 and 2081–2100 under Representative Concentration Pathway (RCP) 2.6 and 8.5, relative to 1986–2005. Solid colors indicate areas with very strong agreement, 
where the multi-model mean change is greater than twice the baseline variability (natural internal variability in 20-year means) and ≥90% of models agree on sign of change. 
Colors with white dots indicate areas with strong agreement, where ≥66% of models show change greater than the baseline variability and ≥66% of models agree on sign of 
change. Gray indicates areas with divergent changes, where ≥66% of models show change greater than the baseline variability, but <66% agree on sign of change. Colors 
with diagonal lines indicate areas with little or no change, where <66% of models show change greater than the baseline variability, although there may be significant change 
at shorter timescales such as seasons, months, or days. Analysis uses model data from WGI AR5 Figure SPM.8, Box 12.1, and Annex I. The range of grid-point values for the 
multi-model mean is: +0.19 to +4.08˚C for mid 21st century of RCP2.6; +0.06 to +3.85˚C for late 21st century of RCP2.6; +0.70 to +7.04˚C for mid 21st century of RCP8.5; 
and +1.38 to +11.71°C for late 21st century of RCP8.5.
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Figure RC-3 | Observed and projected changes in annual average precipitation. (A) Map of observed annual precipitation change from 1951–2010, derived from a linear trend 
where sufficient data permit a robust estimate (i.e., only for grid boxes with greater than 70% complete records and more than 20% data availability in the first and last 10% of 
the time period); other areas are white. Solid colors indicate areas where trends are significant at the 10% level (after accounting for autocorrelation effects on significance 
testing). Diagonal lines indicate areas where trends are not significant. Observed data (range of grid-point values: –185 to +111 mm/year per decade) are from WGI AR5 Figures 
SPM.2 and 2.29. (B) Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model average percent changes in annual mean precipitation for 2046–2065 and 
2081–2100 under Representative Concentration Pathway (RCP) 2.6 and 8.5, relative to 1986–2005. Solid colors indicate areas with very strong agreement, where the 
multi-model mean change is greater than twice the baseline variability (natural internal variability in 20-yr means) and ≥90% of models agree on sign of change. Colors with 
white dots indicate areas with strong agreement, where ≥66% of models show change greater than the baseline variability and ≥66% of models agree on sign of change. Gray 
indicates areas with divergent changes, where ≥66% of models show change greater than the baseline variability, but <66% agree on sign of change. Colors with diagonal lines 
indicate areas with little or no change, where <66% of models show change greater than the baseline variability, although there may be significant change at shorter timescales 
such as seasons, months, or days. Analysis uses model data from WGI AR5 Figure SPM.8, Box 12.1, and Annex I. The range of grid-point values for the multi-model mean is: –10 
to +24% for mid 21st century of RCP2.6; –9 to +22% for late 21st century of RCP2.6; –19 to +57% for mid 21st century of RCP8.5; and –34 to +112% for late 21st century 
of RCP8.5.
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It is widely acknowledged that the flow regime is a primary determinant of the structure and 
function of rivers and their associated floodplain wetlands, and flow alteration is considered to be 
a serious and continuing threat to freshwater ecosystems (Bunn and Arthington, 2002; Poff and 
Zimmerman, 2010; Poff et al., 2010). Most species distribution models do not consider the effect 
of changing flow regimes (i.e., changes to the frequency, magnitude, duration, and/or timing of 
key flow parameters) or they use precipitation as proxy for river flow (Heino et al., 2009). 

There is growing evidence that climate change will significantly alter ecologically important 
attributes of hydrologic regimes in rivers and wetlands, and exacerbate impacts from human 
water use in developed river basins (medium confidence; Xenopoulos et al., 2005; Aldous et al., 
2011). By the 2050s, climate change is projected to impact river flow characteristics such as 
long-term average discharge, seasonality, and statistical high flows (but not statistical low flows) 
more strongly than dam construction and water withdrawals have done up to around the year 
2000  (Figure RF-1; Döll and Zhang, 2010). For one climate scenario (Special Report on Emission 
Scenarios (SRES) A2 emissions, Met Office Hadley Centre climate prediction model 3 (HadCM3)), 
15% of the global land area may be negatively affected, by the 2050s, by a decrease of fish 
species in the upstream basin of more than 10%, as compared to only 10% of the land area that 
has already suffered from such decreases due to water withdrawals and dams (Döll and Zhang, 
2010). Climate change may exacerbate the negative impacts of dams for freshwater ecosystems 
but may also provide opportunities for operating dams and power stations to the benefit of 
riverine ecosystems. This is the case if total runoff increases and, as occurs in Sweden, the annual 
hydrograph becomes more similar to variation in electricity demand, that is, with a lower spring 
flood and increased runoff during winter months (Renofalt et al., 2010).

Because biota are often adapted to a certain level of river flow variability, the projected larger 
variability of river flows that is due to increased climate variability is likely to select for generalist 
or invasive species (Ficke et al., 2007). The relatively stable habitats of groundwater-fed streams in 
snow-dominated or glacierized basins may be altered by reduced recharge by meltwater and as a 
result experience more variable (possibly intermittent) flows (Hannah et al., 2007). A high-impact 
change of flow variability is a flow regime shift from intermittent to perennial or vice versa. It is 
projected that until the 2050s, river flow regime shifts may occur on 5 to 7% of the global land 
area, mainly in semiarid areas (Döll and Müller Schmied, 2012; see Table 3-2 in Chapter 3). 

In Africa, one third of fish species and one fifth of the endemic fish species occur in eco-regions 
that may experience a change in discharge or runoff of more than 40% by the 2050s (Thieme et 
al., 2010). Eco-regions containing more than 80% of Africa’s freshwater fish species and several 
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outstanding ecological and evolutionary phenomena are likely to experience hydrologic conditions substantially different from the present, 
with alterations in long-term average annual river discharge or runoff of more than 10% due to climate change and water use (Thieme et al., 
2010). 

As a result of increased winter temperatures, freshwater ecosystems in basins with significant snow storage are affected by higher river 
flows in winter, earlier spring peak flows, and possibly reduced summer low flows (Section 3.2.3). Strongly increased winter peak flows may 
lead to a decline in salmonid populations in the Pacific Northwest of the USA of 20 to 40% by the 2050s (depending on the climate model) 
due to scouring of the streambed during egg incubation, the relatively pristine high-elevation areas being affected most (Battin et al., 2007). 
Reductions in summer low flows will increase the competition for water between ecosystems and irrigation water users (Stewart et al., 
2005). Ensuring environmental flows through purchasing or leasing water rights and altering reservoir release patterns will be an important 
adaptation strategy (Palmer et al., 2009).

Mean annual river flow Low flow Q90
Monthly river flow exceeded in 9 out of 10 months

Impact of climate change at least twice as strong as impact of water withdrawals and dams on natural flow
Impact of water withdrawals and dams on natural flow at least twice as strong as impact of climate change
None of the two impacts is more than twice as strong as the other
Information not computable

Climate change exacerbates past impacts of water withdrawals and dams on natural flow that reduced flow
Climate change exacerbates past impacts of water withdrawals and dams on natural flow that increased flow
Climate change mitigates past impacts of water withdrawals and dams on natural flow that reduced flow
Climate change mitigates past impacts of water withdrawals and dams on natural flow that increased flow
Past impacts < 1% or information not computable

Figure RF-1 | Impact of climate change relative to the impact of water withdrawals and dams on natural flows for two ecologically relevant river flow characteristics (mean annual river 
flow and monthly low flow Q90), computed by a global water model (Döll and Zhang, 2010). Impact of climate change is the percent change of flow between 1961–1990 and 2041–2070 
according to the emissions scenario A2 as implemented by the global climate model Met Office Hadley Centre Coupled Model, version 3 (HadCM3). Impact of water withdrawals and 
reservoirs is computed by running the model with and without water withdrawals and dams that existed in 2002. Please note that the figure does not reflect spatial differences in the 
magnitude of change.

Observations and models suggest that global warming impacts on glacier and snow-fed streams and rivers will pass through two contrasting 
phases (Burkett et al., 2005; Vuille et al., 2008; Jacobsen et al., 2012). In the first phase, when river discharge is increased as a result of 
intensified melting, the overall diversity and abundance of species may increase. However, changes in water temperature and stream flow may 
have negative impacts on narrow range endemics (Jacobsen et al., 2012). In the second phase, when snowfields melt early and glaciers have 
shrunken to the point that late-summer stream flow is reduced, broad negative impacts are foreseen, with species diversity rapidly declining 
once a critical threshold of roughly 50% glacial cover is crossed (Figure RF-2).

River discharge also influences the response of river temperatures to increases of air temperature. Globally averaged, air temperature increases 
of 2°C, 4°C, and 6°C are estimated to lead to increases of annual mean river temperatures of 1.3°C, 2.6°C, and 3.8°C, respectively (van Vliet 
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Figure RF-2 | Accumulated loss of regional species richness (gamma diversity) of macroinvertebrates as a function of glacial cover in catchment. Obligate glacial river 
macroinvertebrates begin to disappear from assemblages when glacial cover in the catchment drops below approximately 50%, and 9 to 14 species are predicted to be lost with 
the complete disappearance of glaciers in each region, corresponding to 11, 16, and 38% of the total species richness in the three study regions in Ecuador, Europe, and Alaska. 
Data are derived from multiple river sites from the Ecuadorian Andes and Swiss and Italian Alps, and a temporal study of a river in the Coastal Range Mountains of southeast 
Alaska over nearly three decades of glacial shrinkage. Each data point represents a river site (Europe or Ecuador) or date (Alaska), and lines are Lowess fits. (Adapted by 
permission from Jacobsen et al., 2012.)

et al., 2011). Discharge decreases of 20% and 40% are computed to result in additional increases of river water temperature of 0.3° C and 
0.8°C on average (van Vliet et al., 2011). Therefore, where rivers will experience drought more frequently in the future, freshwater-dependent 
biota will suffer not only directly by changed flow conditions but also by drought-induced river temperature increases, as well as by related 
decreased oxygen and increased pollutant concentrations.
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Tropical cyclones (also referred to as hurricanes and typhoons in some regions) cause powerful 
winds, torrential rains, high waves, and storm surge, all of which can have major impacts on 
society and ecosystems. Bangladesh and India suffer 86% of mortality from tropical cyclones 
(Murray et al., 2012), which occurs mainly during the rarest and most severe storm categories (i.e., 
Categories 3, 4, and 5 on the Saffir–Simpson scale).
 
About 90 tropical cyclones occur globally each year (Seneviratne et al., 2012) although interannual 
variability is large. Changes in observing techniques, particularly after the introduction of satellites 
in the late 1970s, confounds the assessment of trends in tropical cyclone frequencies and 
intensities, which leads to low confidence that any observed long-term (i.e., 40 years or more) 
increases in tropical cyclone activity are robust, after accounting for past changes in observing 
capability (Seneviratne et al., 2012; Chapter 2). There is also low confidence in the detection and 
attribution of century scale trends in tropical cyclones. Future changes to tropical cyclones arising 
from climate change are likely to vary by region. This is because there is medium confidence 
that for certain regions, shorter-term forcing by natural and anthropogenic aerosols has had a 
measurable effect on tropical cyclones. Tropical cyclone frequency is likely to decrease or remain 
unchanged over the 21st century, while intensity (i.e., maximum wind speed and rainfall rates) is 
likely to increase (WGI AR5  Section 14.6). Regionally specific projections have lower confidence 
(see WGI AR5 Box 14.2).

Longer-term impacts from tropical cyclones include salinization of coastal soils and water supplies 
and subsequent food and water security issues from the associated storm surge and waves (Terry 
and Chui, 2012). However, preparation for extreme tropical cyclone events through improved 
governance and development to reduce their impacts provides an avenue for building resilience to 
longer-term changes associated with climate change.
 
Asian deltas are particularly vulnerable to tropical cyclones owing to their large population density 
in expanding urban areas (Nicholls et al., 2007). Extreme cyclones in Asia since 1970 caused more 
than 0.5 million fatalities (Murray et al., 2012), for example, cyclones Bhola in 1970, Gorky in 
1991, Thelma in 1998, Gujarat in 1998, Orissa in 1999, Sidr in 2007, and Nargis in 2008. Tropical 
cyclone Nargis hit Myanmar on May 2, 2008 and caused more than 138,000 fatalities. Several-
meter high storm surges widely flooded densely populated coastal areas of the Irrawaddy Delta 
and surrounding areas (Revenga et al., 2003; Brakenridge et al., 2013). The flooded areas were 
captured by a NASA Moderate Resolution Imaging Spectrometer (MODIS) image on May 5, 2008 
(see Figure TC-1).



Cross-Chapter BoxBuilding Long-Term Resilience from Tropical Cyclone Disasters

148

TC

Murray et al. (2012) compared the response to cyclone 
Sidr in Bangladesh in 2007 and Nargis in Myanmar in 
2008 and demonstrated how disaster risk reduction 
methods could be successfully applied to climate change 
adaptation. Sidr, despite being of similar strength to 
Nargis, caused far fewer fatalities (3400 compared to more 
than 138,000) and this was attributed to advancement 
in preparedness and response in Bangladesh through 
experience in previous cyclones such as Bhola and Gorky. 
The responses included the construction of multistoried 
cyclone shelters, improvement of forecasting and warning 
capacity, establishing a coastal volunteer network, 
and coastal reforestation of mangroves. Disaster risk 
management strategies for tropical cyclones in coastal 
areas create protective measures, anticipate and plan for 
extreme events, and increase the resilience of potentially 
exposed communities. The integration of activities relating 
to education, training, and awareness-raising into relevant 
ongoing processes and practices is important for the long-
term success of disaster risk reduction and management 
(Murray et al., 2012). However, Birkmann and Teichman 
(2010) caution that while the combination of risk reduction 
and climate change adaptation strategies may be desirable, 
different spatial and temporal scales, norm systems, and 
knowledge types and sources between the two goals can 
confound their effective combination. 
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Upwelling is the vertical transport of cold, dense, nutrient-rich, relatively low-pH and often 
oxygen-poor waters to the euphotic zone where light is abundant. These conditions trigger high 
levels of primary production and a high biomass of benthic and pelagic organisms. The driving 
forces of upwelling include wind stress and the interaction of ocean currents with bottom 
topography. Upwelling intensity also depends on water column stratification. The major upwelling 
systems of the planet, the Equatorial Upwelling System (EUS; Section 30.5.2, Figure 30.1A) and 
the Eastern Boundary Upwelling Ecosystems (EBUE; Section 30.5.5, Figure 30.1A), represent only 
10% of the ocean surface but contribute nearly 25% to global fish production (Figure 30.1B, Table 
SM30.1). 

Marine ecosystems associated with upwelling systems can be influenced by a range of “bottom-
up” trophic mechanisms, with upwelling, transport, and chlorophyll concentrations showing 
strong seasonal and interannual couplings and variability. These, in turn, influence trophic transfer 
up the food chain, affecting zooplankton, foraging fish, seabirds, and marine mammals. 

There is considerable speculation as to how upwelling systems might change in a warming and 
acidifying ocean. Globally, the heat gain of the surface ocean has increased stratification by 
4% (WGI Sections 3.2, 3.3, 3.8), which means that more wind energy is needed to bring deep 
waters to the surface. It is as yet unclear to what extent wind stress can offset the increased 
stratification, owing to the uncertainty in wind speed trends (WGI Section 3.4.4). In the tropics, 
observations of reductions in trade winds over several decades contrast more recent evidence 
indicating their strengthening since the late 1990s (WGI Section 3.4.4). Observations and 
modeling efforts in fact show diverging trends in coastal upwelling at the eastern boundaries 
of the Pacific and the Atlantic. Bakun (1990) proposed that the difference in rates of heat gain 
between land and ocean causes an increase in the pressure gradient, which results in increased 
alongshore winds and leads to intensified offshore transport of surface water through Ekman 
pumping and the upwelling of nutrient-rich, cold waters (Figure CC-UP). Some regional records 
support this hypothesis; others do not. There is considerable variability in warming and cooling 
trends over the past decades both within and among systems, making it difficult to predict 
changes in the intensity of all Eastern EBUEs (Section 30.5.5).

Understanding whether upwelling and climate change will impact resident biota in an additive, 
synergistic, or antagonistic manner is important for projections of how ecological goods and 
services provided for human society will change. Even though upwellings may prove more 
resilient to climate change than other ocean ecosystems because of their ability to function 
under extremely variable conditions (Capone and Hutchins, 2013), consequences of their shifts 
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are highly relevant because these systems provide a significant portion of global primary productivity and fishery catch (Figure 30.1 A, B; 
Table SM30.1). Increased upwelling would enhance fisheries yields. However, the export of organic material from surface to deeper layers of 
the ocean may increase and stimulate its decomposition by microbial activity, thereby enhancing oxygen depletion and CO2 enrichment in 
deeper water layers. Once this water returns to the surface through upwelling, benthic and pelagic coastal communities will be exposed to 
acidified and deoxygenated water which may combine with anthropogenic impact to negatively affect marine biota and ecosystem structure 
of the upper ocean (high confidence; Sections 6.3.2, 6.3.3, 30.3.2.2, 30.3.2.3). Extreme hypoxia may result in abnormal mortalities of fishes 
and invertebrates (Keller et al., 2010), reduce fisheries’ catch potential, and impact aquaculture in coastal areas (Barton et al., 2012; see also 
Sections 5.4.3.3, 6.3.3, 6.4.1, 30.5.1.1.2, 30.5.5.1.3). Shifts in upwelling also coincide with an apparent increase in the frequency of submarine 
eruptions of methane and hydrogen sulfide gas, caused by enhanced formation and sinking of phytoplankton biomass to the hypoxic or anoxic 
sea floor. This combination of factors has been implicated in the extensive mortality of coastal fishes and invertebrates (Bakun and Weeks, 
2004; Bakun et al., 2010), resulting in significant reductions in fishing productivity, such as Cape hake (Merluccius capensis), Namibia’s most 
valuable fishery (Hamukuaya et al., 1998).

Reduced upwelling would also reduce the productivity of important pelagic fisheries, such as for sardines, anchovies and mackerel, with 
major consequences for the economies of several countries (Section 6.4.1, Chapter 7, Figure 30.1A, B, Table S30.1). However, under projected 
scenarios of reduced upward supply of nutrients due to stratification of the open ocean, upwelling of both nutrients and trace elements may 
become increasingly important to maintaining upper ocean nutrient and trace metal inventories. It has been suggested that upwelling areas 
may also increase nutrient content and productivity under enhanced stratification, and that upwelled and partially denitrified waters containing 
excess phosphate may select for N2-fixing microorganisms (Deutsch et al., 2007; Deutsch and Weber, 2012), but field observations of N2 fixation 
in these regions have not supported these predictions (Fernandez et al., 2011; Franz et al., 2012). The role of this process in global primary 
production thus needs to be validated (low confidence). 

The central question therefore is whether or not upwelling will intensify, and if so, whether the effects of intensified upwelling on O2 and CO2 
inventories will outweigh its benefits for primary production and associated fisheries and aquaculture (low confidence). In any case increasing 
atmospheric CO2 concentrations will equilibrate with upwelling waters that may cause them to become more corrosive, depending on pCO2 of 
the upwelled water, and potentially increasingly impact the biota of EBUEs. 
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Figure UP-1 | (a) Hypothetic mechanism of increasing coastal wind–driven upwelling at Equatorial and Eastern Boundary upwelling systems (EUS, EBUE, Figure 30-1), where differential 
warming rates between land and ocean results in increased land–ocean (1) pressure gradients that produce (2) stronger alongshore winds and (3) offshore movement of surface water 
through Ekman transport, and (4) increased upwelling of deep cold nutrient rich waters to replace it. (b) Potential consequences of climate change in upwelling systems. Increasing 
stratification and uncertainty in wind stress trends result in uncertain trends in upwelling. Increasing upwelling may result in higher input of nutrients to the euphotic zone, and increased 
primary production, which in turn may enhance pelagic fisheries, but also decrease coastal fisheries due to an increased exposure of coastal fauna to hypoxic, low pH waters. Decreased 
upwelling may result in lower primary production in these systems with direct impacts on pelagic fisheries productivity.
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Rural areas and urban areas have always been interconnected and interdependent, but recent 
decades have seen new forms of these interconnections: a tendency for rural–urban boundaries 
to become less well defined, and new types of land use and economic activity on those 
boundaries. These conditions have important implications for understanding climate change 
impacts, vulnerabilities, and opportunities for adaptation. This box examines three critical 
implications of these interactions:
1) Climate extremes in rural areas resulting in urban impacts— teleconnections of resources 

and migration streams mean that climate extremes in non-urban locations with associated 
shifts in water supply, rural agricultural potential, and the habitability of rural areas will have 
downstream impacts in cities. 

2) Events specific to the rural–urban interface— given the highly integrated nature of rural–
urban interface areas and overarching demand to accommodate both rural and urban 
demands in these settings, there is a set of impacts, vulnerabilities, and opportunities 
for adaptation specific to these locations. These impacts include loss of local agricultural 
production, economic marginalization resulting from being neither rural or urban, and stress 
on human health. 

3) Integrated infrastructure and service disruption—as urban demands often take preference, 
interdependent rural and urban resource systems place nearby rural areas at risk, because 
during conditions of climate stress, rural areas more often suffer resource shortages or 
other disruptions to sustain resources to cities. For example, under conditions of resource 
stress associated with climate risk (e.g., droughts) urban areas are at an advantage because 
of political, social, and economic requirements to maintain service supply to cities to the 
detriment of relatively marginal rural sites and settlements. 

Urban areas historically have been dependent on the lands just beyond their boundaries for 
most of their critical resources including water, food, and energy. Although in many contexts, 
the connections between urban settlements and surrounding rural areas are still present, long 
distance, teleconnected, large-scale supply chains have been developed particularly with respect 
to energy resources and food supply (Güneralp et al., 2013). Extreme event disruptions in distant 
resource areas or to the supply chain and relevant infrastructure can negatively impact the urban 
areas dependent on these materials (Wilbanks et al., 2012). During the summer of 2012, for 
instance, an extended drought period in the central United States led to significantly reduced river 
levels on the Mississippi River that led to interruptions of barge traffic and delay of commodity 
flows to cities throughout the country. Urban water supply is also vulnerable to droughts in 
predominantly rural areas. In the case of Bulawayo, Zimbabwe, periodic urban water shortages 
over the last few decades have been triggered by rural droughts (Mkandla et al., 2005).
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A further teleconnection between rural and urban areas is rural–urban migration. There have been cases where migration and urbanization 
patterns have been to attributed to climate change or its proxies such as in parts of Africa (Morton, 1989; Barrios et al., 2006). However, 
as recognized by Black et al. (2011), life in rural areas across the world typically involves complex patterns of rural–urban and rural–rural 
migration, subject to economic, political, social, and demographic drivers, patterns that are modified or exacerbated by climate events and 
trends rather than solely caused by them.

 Globally, an increased blending of urban and rural qualities has occurred. Simon et al. (2006, p. 4) assert that the simple dichotomy between 
“rural” and “urban” has “long ceased to have much meaning in practice or for policy-making purposes in many parts of the global South.” 
One approach to reconciling this is through the increasing application of the concept of “peri-urban areas” (Simon et al., 2006; Simon, 2008). 
These areas can be seen as rural locations that have “become more urban in character” (Webster, 2002, p. 5); as sites where households 
pursue a wider range of income-generating activities while still residing in what appear to be “largely rural landscapes” (Learner and Eakin, 
2010, p. 1); or as locations in which rural and urban land uses coexist, whether in contiguous or fragmented units (Bowyer-Bower, 2006). The 
inhabitants of “core” urban areas within cities have also increasingly turned to agriculture, with production of staple foods, higher value crops 
and livestock (Bryld, 2003; Devendra et al., 2005; Lerner and Eakin, 2010; Lerner et al., 2013). Bryld (2003) sees this as driven by rural–urban 
migration and by structural adjustment (e.g., withdrawal of food price controls and food subsidies). Lerner and Eakin (2011; also Lerner et al., 
2013) explored reasons why people produce food in urban environments, despite high opportunity costs of land and labor: buffering of risk 
from insecure urban labor markets; response to consumer demand; and the meeting of cultural needs.

Livelihoods and areas on the rural–urban interface suffer highly specific forms of vulnerability to disasters, including climate-related disasters. 
These may be summarized as specifically combining urban vulnerabilities of population concentration, dependence on infrastructure, and social 
diversity limiting social support with rural traits of distance, isolation, and invisibility to policymakers (Pelling and Mustafa, 2010). Increased 
connectivity can also encourage land expropriation to enable commercial land development (Pelling and Mustafa, 2010). Vulnerability may 
arise from the coexistence of rural and urban perspectives, which may give rise to conflicts between different social/interest groups and 
economic activities (Masuda and Garvin, 2008; Solona-Solona 2010; Darly and Torre, 2013).

Additional vulnerability of peri-urban areas is on account of the re-constituted institutional arrangements and their structural constraints 
(Iaquinta and Drescher, 2000). Rapid declines in traditional informal institutions and forms of collective action, and their imperfect replacement 
with formal state and market institutions, may also increase vulnerability (Pelling and Mustafa, 2010).

Peri-urban areas and livelihoods have low visibility to policymakers at both local and national levels, and may suffer from a lack of necessary 
services and inappropriate and uncoordinated policies. In Tanzania and Malawi, national policies of agricultural extension to farmer groups, for 
example, do not reach peri-urban farmers (Liwenga et al., 2012). In peri-urban areas around Mexico City (Eakin et al., 2013), management of 
the substantial risk of flooding is led de facto by agricultural and water agencies, in the absence of capacity within peri-urban municipalities 
and despite clear evidence that urban encroachment is a key driver of flood risk. In developed country contexts, suburban–exurban fringe areas 
often are overlooked in the policy arena that traditionally focuses on rural development and agricultural production, or urban growth and 
services (Hanlon et al., 2010). The environmental function of urban agriculture, in particular, in protection against flooding, will increase in the 
context of climate change (Aubry et al., 2012).

However, peri-urban areas and mixed livelihoods more generally on rural–urban interfaces, also exhibit specific factors that increase their 
resilience to climate shocks (Pelling and Mustafa, 2010). Increased transport connectivity in peri-urban areas can reduce disaster risk by 
providing a greater diversity of livelihood options and improving access to education. The expansion of local labor markets and wage labor in 
these areas can strengthen adaptive capacity through providing new livelihood opportunities (Pelling and Mustafa, 2010). Maintaining mixed 
portfolios of agricultural and non-agricultural livelihoods also spreads risk (Lerner et al., 2013).

In high-income countries, practices attempting to enhance the ecosystem services and localized agriculture more typically associated with 
lower density areas have been encouraged. In many situations these practices are focused increasingly on climate adaptation and mitigating 
the impacts of climate extremes such as those associated with heating and the urban heat island effect, or wetland restoration efforts to limit 
the impact of storm surge wave action (Verburg et al., 2012).

The dramatic growth of urban areas also implies that rural areas and communities are increasingly politically and economically marginalized 
within national contexts, resulting in potential infrastructure and service disruptions for such sites. Existing rural–urban conflicts for the 
management of natural resources (Castro and Nielsen, 2003) such as water (Celio et al., 2011) or land use conversion in rural areas, for 
example, wind farms in rural Catalonia (Zografos and Martínez-Alier, 2009); industrial coastal areas in Sweden (Stepanova and Bruckmeier, 
2013); or conversion of rice land into industrial, residential, and recreational uses in the Philippines (Kelly, 1998) have been documented, and it 
is expected that stress from climate change impacts on land and natural resources will exacerbate these tensions. For instance, climate-induced 
reductions in water availability may be more of a concern than population growth or increased per capita use for securing continued supplies 
of water to large cities (Jenerette and Larsen, 2006), which requires an innovative approach to address such conflicts (Pearson et al., 2010).
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Climate, vegetation, and carbon and water cycles are intimately coupled, in particular via 
the simultaneous transpiration and CO2 uptake through plant stomata in the process of 
photosynthesis. Hence, water flows such as runoff and evapotranspiration are affected not only 
directly by anthropogenic climate change as such (i.e., by changes in climate variables such as 
temperature and precipitation), but also indirectly by plant responses to increased atmospheric 
CO2 concentrations. In addition, effects of climate change (e.g., higher temperature or altered 
precipitation) on vegetation structure, biomass production, and plant distribution have an indirect 
influence on water flows. Rising CO2 concentration affects vegetation and associated water 
flows in two contrasting ways, as suggested by ample evidence from Free Air CO2 Enrichment 
(FACE), laboratory and modeling experiments (e.g., Leakey et al., 2009; Reddy et al., 2010; de 
Boer et al., 2011). On the one hand, a physiological effect leads to reduced opening of stomatal 
apertures, which is associated with lower water flow through the stomata, that is, lower leaf-
level transpiration. On the other hand, a structural effect (“fertilization effect”) stimulates 
photosynthesis and biomass production of C3 plants including all tree species, which eventually 
leads to higher transpiration at regional scales. A key question is to what extent the climate- and 
CO2-induced changes in vegetation and transpiration translate into changes in regional and global 
runoff.

The physiological effect of CO2 is associated with an increased intrinsic water use efficiency (WUE) 
of plants, which means that less water is transpired per unit of carbon assimilated. Records of 
stable carbon isotopes in woody plants (Peñuelas et al., 2011) verify this finding, suggesting an 
increase in WUE of mature trees by 20.5% between the early 1960s and the early 2000s. Increases 
since pre-industrial times have also been found for several forest sites (Andreu-Hayles et al., 
2011; Gagen et al., 2011; Loader et al., 2011; Nock et al., 2011) and in a temperate semi-natural 
grassland (Koehler et al., 2010), although in one boreal tree species WUE ceased to increase 
after 1970 (Gagen et al., 2011). Analysis of long-term whole-ecosystem carbon and water flux 
measurements from 21 sites in North American temperate and boreal forests corroborates a 
notable increase in WUE over the two past decades (Keenan et al., 2013). An increase in global 
WUE over the past century is supported by ecosystem model results (Ito and Inatomi, 2012).

A key influence on the significance of increased WUE for large-scale transpiration is whether 
vegetation structure and production has remained approximately constant (as assumed in the 
global modeling study by Gedney et al., 2006) or has increased in some regions due to the 
structural CO2 effect (as assumed in models by Piao et al., 2007; Gerten et al., 2008). While field-
based results vary considerably among sites, tree ring studies suggest that tree growth did not 
increase globally since the 1970s in response to climate and CO2 change (Andreu-Hayles et al., 
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2011; Peñuelas et al., 2011). However, basal area measurements at more than 150 plots across the tropics suggest that biomass and growth 
rates in intact tropical forests have increased in recent decades (Lewis et al., 2009). This is also confirmed for 55 temperate forest plots, with a 
suspected contribution of CO2 effects (McMahon et al., 2010). Satellite observations analyzed in Donohue et al. (2013) suggest that an increase 
in vegetation cover by 11% in warm drylands (1982–2010 period) is attributable to CO2 fertilization. Owing to the interplay of physiological 
and structural effects, the net impact of CO2 increase on global-scale transpiration and runoff remains rather poorly constrained. This is also true 
because nutrient limitation, often omitted in modeling studies, can suppress the CO2 fertilization effect (see Rosenthal and Tomeo, 2013).

Therefore, there are conflicting views on whether the direct CO2 effects on plants already have a significant influence on evapotranspiration 
and runoff at global scale. AR4 reported work by Gedney et al. (2006) that suggested that the physiological CO2 effect (lower transpiration) 
contributed to a supposed increase in global runoff seen in reconstructions by Labat et al. (2004). However, a more recent analysis based on 
a more complete data set (Dai et al., 2009) suggested that river basins with decreasing runoff outnumber basins with increasing runoff, such 
that a small decline in global runoff is likely for the period 1948–2004. Hence, detection of vegetation contributions to changes in water flows 
critically depends on the availability and quality of hydrometeorological observations (Haddeland et al., 2011; Lorenz and Kunstmann, 2012). 
Overall, the evidence since AR4 suggests that climatic variations and trends have been the main driver of global runoff change in the past 
decades; both CO2 increase and land use change have contributed less (Piao et al., 2007; Gerten et al., 2008; Alkama et al., 2011; Sterling et al., 
2013). Oliveira et al. (2011) furthermore pointed to the importance of changes in incident solar radiation and the mediating role of vegetation; 
according to their global simulations, a higher diffuse radiation fraction during 1960–1990 may have increased evapotranspiration in the tropics 
by 3% due to higher photosynthesis from shaded leaves.

It is uncertain how vegetation responses to future increases in CO2 and to climate change will modulate the impacts of climate change on 
freshwater flows. Twenty-first century continental- and basin-scale runoff is projected by some models to either increase more or decrease less 
when the physiological CO2 effect is included in addition to climate change effects (Betts et al., 2007; Murray et al., 2012). This could somewhat 
ease the increase in water scarcity anticipated in response to future climate change and population growth (Gerten et al., 2011; Wiltshire et 
al., 2013). In absolute terms, the isolated effect of CO2 has been modeled to increase future global runoff by 4 to 5% (Gerten et al., 2008) up 
to 13% (Nugent and Matthews, 2012) compared to the present, depending on the assumed CO2 trajectory and whether feedbacks of changes 
in vegetation structure and distribution to the atmosphere are accounted for (they were in Nugent and Matthews, 2012). In a global model 
intercomparison study (Davie et al., 2013), two out of four models projected stronger increases and, respectively, weaker decreases in runoff 
when considering CO2 effects compared to simulations with constant CO2 concentration (consistent with the above findings, though magnitudes 
differed between the models), but two other models showed the reverse. Thus, the choice of models and the way they represent the coupling 
between CO2, stomatal closure, and plant growth is a source of uncertainty, as also suggested by Cao et al. (2009). Lower transpiration due to 
rising CO2 concentration may also affect future regional climate change itself (Boucher et al., 2009) and enhance the contrast between land 
and ocean surface warming (Joshi et al., 2008). Overall, although physiological and structural effects will influence water flows in many regions, 
precipitation and temperature effects are likely to remain the prime influence on global runoff (Alkama et al., 2010). 

An application of a soil–vegetation–atmosphere–transfer model indicates complex responses of groundwater recharge to vegetation-mediated 
changes in climate, with computed groundwater recharge being always larger than would be expected from just accounting for changes in 
rainfall (McCallum et al., 2010). Another study found that even if precipitation slightly decreased, groundwater recharge might increase as a 
net effect of vegetation responses to climate change and CO2 rise, that is, increasing WUE and either increasing or decreasing leaf area (Crosbie 
et al., 2010). Depending on the type of grass in Australia, the same change in climate is suggested to lead to either increasing or decreasing 
groundwater recharge in this location (Green et al., 2007). For a site in the Netherlands, a biomass decrease was computed for each of eight 
climate scenarios indicating drier summers and wetter winters (A2 emissions scenario), using a fully coupled vegetation and variably saturated 
hydrological model. The resulting increase in groundwater recharge up-slope was simulated to lead to higher water tables and an extended 
habitat for down-slope moisture-adapted vegetation (Brolsma et al., 2010).

Using a large ensemble of climate change projections, Konzmann et al. (2013) put hydrological changes into an agricultural perspective and 
suggested that the net result of physiological and structural CO2 effects on crop irrigation requirements would be a global reduction (Figure 
VW-1). Thus, adverse climate change impacts on irrigation requirements and crop yields might be partly buffered as WUE and crop production 
improve (Fader et al., 2010). However, substantial CO2-driven improvements will be realized only if proper management abates limitation of 
plant growth by nutrient availability or other factors. 

Changes in vegetation coverage and structure due to long-term climate change or shorter-term extreme events such as droughts (Anderegg 
et al., 2013) also affect the partitioning of precipitation into evapotranspiration and runoff, sometimes involving complex feedbacks with 
the atmosphere such as in the Amazon region (Port et al., 2012; Saatchi et al., 2013). One model in the study by Davie et al. (2013) showed 
regionally diverse climate change effects on vegetation distribution and structure, which had a much weaker effect on global runoff than the 
structural and physiological CO2 effects. As water, carbon, and vegetation dynamics evolve synchronously and interactively under climate change 
(Heyder et al., 2011; Gerten et al., 2013), it remains a challenge to disentangle the individual effects of climate, CO2, and land cover change on 
the water cycle.
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Figure VW-1 | Percentage change in net irrigation requirements of 11 major crops from 1971–2000 to 2070–2099 on areas currently equipped for irrigation, assuming current 
management practices. (a) Impact of climate change including physiological and structural crop responses to increased atmospheric CO2 concentration (co-limitation by nutrients 
not considered). (b) Impact of climate change only. Shown is the median change derived from climate change projections by 19 General Circulation Models (GCMs; based on the 
Special Report on Emission Scenarios (SRES) A2 emissions scenario) used to force a vegetation and hydrology model. (Modified after Konzmann et al., 2013.)
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Water, energy, and food/feed/fiber are linked through numerous interactive pathways and 
subject to a changing climate, as depicted in Figure CC-WE-1. The depth and intensity of those 
linkages vary enormously among countries, regions, and production systems. Energy technologies 
(e.g., biofuels, hydropower, thermal power plants), transportation fuels and modes, and food 
products (from irrigated crops, in particular animal protein produced by feeding irrigated crops 
and forages) may require significant amounts of water (Sections 3.7.2, 7.3.2, 10.2,10.3.4, 
22.3.3, 25.7.2; Allan, 2003; King and Weber, 2008; McMahon and Price, 2011; Macknick et al., 
2012a). In irrigated agriculture, climate, irrigating procedure, crop choice, and yields determine 
water requirements per unit of produced crop. In areas where water (and wastewater) must be 
pumped and/or treated, energy must be provided (Metcalf & Eddy, Inc. et al., 2007; Khan and 
Hanjra, 2009; EPA, 2010; Gerten et al., 2011).  While food production, refrigeration, transport, 
and processing require large amounts of energy (Pelletier et al., 2011), a major link between food 
and energy as related to climate change is the competition of bioenergy and food production 
for land and water (robust evidence, high agreement; Section 7.3.2, Box 25-10; Diffenbaugh et 
al., 2012; Skaggs et al., 2012). Food and crop wastes, and wastewater, may be used as sources 
of energy, saving not only the consumption of conventional nonrenewable fuels used in their 
traditional processes, but also the consumption of the water and energy employed for processing 
or treatment and disposal (Schievano et al., 2009; Oh et al., 2010; Olson, 2012). Examples of this 
can be found in several countries across all income ranges.  For example, sugar cane byproducts 
are increasingly used to produce electricity or for cogeneration (McKendry, 2002; Kim and Dale, 
2004) for economic benefits, and increasingly as an option for greenhouse gas mitigation.

Most energy production methods require significant amounts of water, either directly (e.g., crop-
based energy sources and hydropower) or indirectly (e.g., cooling for thermal energy sources or 
other operations) (robust evidence, high agreement; Sections 10.2.2, 10.3.4, 25.7.4; and van Vliet 
et al., 2012; Davies et al., 2013.  Water for biofuels, for example, under the International Energy 
Agency (IEA) Alternative Policy Scenario, which has biofuels production increasing to 71 EJ in 
2030, has been reported by Gerbens-Leenes et al. (2012) to drive global consumptive irrigation 
water use from 0.5% of global renewable water resources in 2005 to 5.5% in 2030, resulting 
in increased pressure on freshwater resources, with potential negative impacts on freshwater 
ecosystems. Water is also required for mining (Section 25.7.3), processing, and residue disposal of 
fossil and nuclear fuels or their byproducts. Water for energy currently ranges from a few percent 
in most developing countries to more than 50% of freshwater withdrawals in some developed 
countries, depending on the country (Kenny et al., 2009; WEC, 2010). Future water requirements 
will depend on electricity demand growth, the portfolio of generation technologies and water 
management options employed (medium evidence, high agreement; WEC, 2010; Sattler et al., 
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2012). Future water availability for energy production will change due to climate change (robust evidence, high agreement; Sections 3.4, 3.5.1, 
3.5.2.2. 

Water may require significant amounts of energy for lifting, transport, and distribution and for its treatment either to use it or to depollute it. 
Wastewater and even excess rainfall in cities requires energy to be treated or disposed. Some non-conventional water sources (wastewater 
or seawater) are often highly energy intensive. Energy intensities per m3 of water vary by about a factor of 10 between different sources, 
for example, locally produced potable water from ground/surface water sources versus desalinated seawater (Box 25-2, Tables 25-6,  25-7;  
Macknick et al., 2012b; Plappally and Lienhard, 2012). Groundwater (35% of total global water withdrawals, with irrigated food production 
being the largest user; Döll et al., 2012) is generally more energy intensive than surface water. In India, for example, 19% of total electricity 
use in 2012 was for agricultural purposes (Central Statistics Office, 2013), with a large share for groundwater pumping. Pumping from greater 
depth increases energy demand significantly—electricity use (kWh m–3 of water) increases by a factor of 3 when going from 35 to 120 m depth 
(Plappally and Lienhard, 2012).  The reuse of appropriate wastewater for irrigation (reclaiming both water and energy-intense nutrients) may 
increase agricultural yields, save energy, and prevent soil erosion (medium confidence; Smit and Nasr, 1992; Jiménez-Cisneros, 1996; Qadir et 
al., 2007;  Raschid-Sally and Jayakody, 2008). More energy efficient treatment methods enable poor quality (“black”) wastewater to be treated 
to quality levels suitable for discharge into water courses, avoiding additional freshwater and associated energy demands (Keraita et al., 2008). 
If properly treated to retain nutrients, such treated water may increase soil productivity, contributing to increased crop yields/food security in 
regions unable to afford high power bills or expensive fertilizer (high confidence; Oron, 1996;  Lazarova and Bahri, 2005; Redwood and Huibers, 
2008; Jiménez-Cisneros, 2009). 

Linkages among water, energy, food/feed/fiber, and climate are also strongly related to land use and management (robust evidence, high 
agreement; Section 4.4.4, Box 25-10). Land degradation often reduces efficiency of water and energy use (e.g., resulting in higher fertilizer 
demand and surface runoff), and compromises food security (Sections 3.7.2, 4.4.4). On the other hand, afforestation activities to sequester 
carbon have important co-benefits of reducing soil erosion and providing additional (even if only temporary) habitat (see Box 25-10) but 
may reduce renewable water resources. Water abstraction for energy, food, or biofuel production or carbon sequestration can also compete 
with minimal environmental flows needed to maintain riverine habitats and wetlands, implying a potential conflict between economic and 
other valuations and uses of water (medium evidence, high agreement; Sections 25.4.3, 25.6.2, Box 25-10). Only a few reports have begun to 
evaluate the multiple interactions among energy, food, land, and water and climate (McCornick et al., 2008; Bazilian et al., 2011; Bierbaum and 
Matson, 2013), addressing the issues from a security standpoint and describing early integrated modeling approaches. The interaction among 
each of these factors is influenced by the changing climate, which in turn impacts energy and water demand, bioproductivity, and other factors 
(see Figure CC-WE-1 and Wise et al., 2009), and has implications for security of supplies of energy, food, and water; adaptation and mitigation 
pathways; and air pollution reduction, as well as the implications for health and economic impacts as described throughout this Assessment 
Report. 

Water

Energy Food/feed/fiber

Water for energy
• Cooling of thermal power plants
• Hydropower
• Irrigation of bioenergy crops
• Extraction and refining

Energy for water
• Extraction and transportation
• Water treatment/desalination
• Wastewater, drainage,
   treatment, and disposal

Energy for food/feed/fiber

Energy – Water – Food/Feed/Fiber – Climate change 

GHG 
emissions/

climate change

Nutritionally appropriate low-meat diet or 
low-water-consuming vegetarian diet 
generally reduces water and energy demand 
as well as GHG emissions per person.

Use of agricultural, livestock, and food waste 
may reduce conventional energy use and GHG 
emissions.

Climate change tends to increase energy 
demand for cooling as well as water demand.

Figure WE-1 | The water–energy–food nexus as related to climate change.  The interlinkages of supply/demand, quality and quantity of water, and energy and food/feed/fiber with 
changing climatic conditions have implications for both adaptation and mitigation strategies.

• Crop and livestock production
• Processing and transport
• Food consumption
• Energy for irrigated crops

Food/feed/fiber for energy production

Competition between (bio)energy and 
food/fiber production for water and land

Water for food/feed/fiber

Impact of food/feed/fiber 
production on water 
quality and runoff 
generation

• Irrigation
• Livestock water use
• Water use for food processing



WE

The Water–Energy–Food/Feed/Fiber Nexus as Linked to Climate ChangeCross-Chapter Box

165

The interconnectivity of food/fiber, water, land use, energy, and climate change, including the perhaps not yet well understood cross-sector 
impacts, are increasingly important in assessing the implications for adaptation/mitigation policy decisions.  Fuel–food–land use–water–
greenhouse gas (GHG) mitigation strategy interactions, particularly related to bioresources for food/feed, power, or fuel, suggest that 
combined assessment of water, land type, and use requirements, energy requirements, and potential uses and GHG impacts often epitomize 
the interlinkages.  For example, mitigation scenarios described in the IPCC Special Report on Renewable Energy Sources and Climate Change 
Mitigation (IPCC, 2011) indicate up to 300 EJ of biomass primary energy by 2050 under increasingly stringent mitigation scenarios.  Such high 
levels of biomass production, in the absence of technology and process/management/operations change, would have significant implications 
for land use, water, and energy, as well as food production and pricing.  Consideration of the interlinkages of energy, food/feed/fiber, water, 
land use, and climate change is increasingly recognized as critical to effective climate resilient pathway decision making (medium evidence, 
high agreement), although tools to support local- and regional-scale assessments and decision support remain very limited. 
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